Project description:Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing unprecedented changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in the Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.
Project description:Several microorganisms have wide temperature growth range and versatility to tolerate large thermal fluctuations in diverse environments. To better understand thermal adaptation of psychrotrophs, Exiguobacterium sibiricum strain 255-15 was used, a psychrotrophic bacterium that grows from -5°C to 39°C. Its genome is approximately 3 Mb in size, has a GC content of 47.7% and includes 2,978 putative protein-encoding genes (CDS). The genome and transcriptome analysis along with the organism's known physiology was used to better understand its thermal adaptation. A total of about 27%, 3.2% and 5.2% of E. sibiricum strain 255-15 CDS spotted on the DNA microarray yielded differentially expressed genes in cells grown at -2.5°C, 10°C and 39°C, respectively, when compared to cells grown at 28°C. The hypothetical and unknown genes represented 10.6%, 0.89% and 2.3% of the CDS differentially expressed when grown at -2.5°C, 10°C and 39°C versus 28°C. The transcriptome analyses showed that E. sibiricum is constitutively adapted to cold temperatures since little differential gene expression was observed at growth temperatures of 10°C and 28°C, but at the extremities of its Arrhenius growth profile, namely -2.5°C and 39°C, much more differential gene expression occurred. The genes that responded were more typically associated with stress response. Keywords: stress response to cold and hot temperatures