Project description:Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by loss-of-function heterozygous mutations of MECP2. Reactivation of the silent wild-type MECP2 allele on the inactive X chromosome (Xi) represents a promising therapeutic opportunity for female RTT patients. Here, we applied a multiplex epigenome editing approach to reactivate MECP2 on Xi. Demethylation of the MECP2 promoter by dCas9-Tet1 with target sgRNA reactivated MECP2 on Xi in RTT hESCs without detectable off-target effects at the transcriptome level. Neurons derived from methylation edited RTT hESCs reversed the smaller soma size and electrophysiological abnormalities. Insulation of the methylation edited MECP2 locus in RTT neurons by dCpf1-CTCF with target crRNA stabilized MECP2 reactivation and rescued the RTT-related neuronal defects, providing a proof-of-concept study for multiplex epigenome editing to treat RTT.
Project description:Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by loss-of-function heterozygous mutations of MECP2. Reactivation of the silent wild-type MECP2 allele on the inactive X chromosome (Xi) represents a promising therapeutic opportunity for female RTT patients. Here, we applied a multiplex epigenome editing approach to reactivate MECP2 on Xi. Demethylation of the MECP2 promoter by dCas9-Tet1 with target sgRNA reactivated MECP2 on Xi in RTT hESCs without detectable off-target effects at the transcriptome level. Neurons derived from methylation edited RTT hESCs reversed the smaller soma size and electrophysiological abnormalities. Insulation of the methylation edited MECP2 locus in RTT neurons by dCpf1-CTCF with target crRNA stabilized MECP2 reactivation and rescued the RTT-related neuronal defects, providing a proof-of-concept study for multiplex epigenome editing to treat RTT.
Project description:Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by loss-of-function heterozygous mutations of MECP2. Reactivation of the silent wild-type MECP2 allele on the inactive X chromosome (Xi) represents a promising therapeutic opportunity for female RTT patients. Here, we applied a multiplex epigenome editing approach to reactivate MECP2 on Xi. Demethylation of the MECP2 promoter by dCas9-Tet1 with target sgRNA reactivated MECP2 on Xi in RTT hESCs without detectable off-target effects at the transcriptome level. Neurons derived from methylation edited RTT hESCs reversed the smaller soma size and electrophysiological abnormalities. Insulation of the methylation edited MECP2 locus in RTT neurons by dCpf1-CTCF with target crRNA stabilized MECP2 reactivation and rescued the RTT-related neuronal defects, providing a proof-of-concept study for multiplex epigenome editing to treat RTT. Evaluation of off-target effects of dCpf1-CTCF with crRNA targeting CTCF binding flanking MECP2 locus
Project description:This SuperSeries is composed of the following subset Series: GSE24285: Genome-wide Analysis Reveals Mecp2-dependent Regulation of MicroRNAs in a Mouse Model of Rett Syndrome (mm8 chromosomal tiling arrays) GSE24286: Genome-wide Analysis Reveals Mecp2-dependent Regulation of MicroRNAs in a Mouse Model of Rett Syndrome (mm8 promoter tiling arrays) GSE24320: Genome-wide Analysis Reveals Mecp2-dependent Regulation of MicroRNAs in a Mouse Model of Rett Syndrome (high-throughput small RNA sequencing) Refer to individual Series
Project description:Rett syndrome is a human intellectual disability disorder that is associated with mutations in the X-linked MECP2 gene. Theepigenetic reader MeCP2 binds to methylated cytosines on the DNA and regulates chromatin organization. We have shownpreviously that MECP2 Rett syndrome missense mutations are impaired in chromatin binding and heterochromatinreorganization. Here, we performed a proteomics analysis of post-translational modifications of MeCP2 isolated from adult mousebrain. We show that MeCP2 carries various post-translational modifications, among them phosphorylation on S80 and S421, whichlead to minor changes in either heterochromatin binding kinetics or clustering. We found that MeCP2 is (di)methylated on severalarginines and that this modification alters heterochromatin organization. Interestingly, we identified the Rett syndrome mutationsite R106 as a dimethylation site. In addition, co-expression of protein arginine methyltransferases 1 and 6 lead to a decrease ofheterochromatin clustering. Altogether, we identified and validated novel modifications of MeCP2 in the brain and show that thesecan modulate its ability to bind as well as reorganize heterochromatin, which may play a role in the pathology of Rett syndrome.