Project description:The current situation of rising demand for animal products and sustainable resource usage, improving nutrient utilization efficiency in dairy cows is an important task. Understanding the biology of feed efficiency in dairy cows enables for the development of markers that may be used to identify and choose the best animals for animal production. Thus in this study, ten Holstein cows were evaluated for feed efficiency and adipose tissue samples from five high efficient and five low efficient dairy cows were collected for protein extraction, digestion and data were analyzed for differential abundant proteins enriched in feed efficiency pathways. Among the identified peptides, we found 110 DAPs and two protein networks significantly related to feed efficiency. Among the relative mRNA expression of genes involved in energy metabolism including transcription/translation (STAT2, DDX39A and RBM39) or protein transport (ITGAV), only RBM39 showed significant decrease in high efficient dairy cows. The findings presented here confirmed the Transferrin upregulated in pathways including acute phase response signaling, LXR/RXR activation, FXR/RXR activation of high efficient dairy cows supporting that these pathways are related to feed efficiency in dairy cows.
Project description:We examined 36 biopsies taken from digital dermatitis lesions of Holstein cows. The target was the V3 -V4 variable region of 16S rRNA using Treponema specific primers. We identified 20 different taxa of Treponema using this approach. Phylogenetic study of the Treponema taxa found in digital dermatitis lesions of Holstein cows.
Project description:Bovine mammary gland provide the largest amount of milk for dairy industry to date. Insight in functional adaptation of this organ is critical in order to improve efficiency of milk synthesis and milk quality. In the present experiment microarray analysis in combination with bioinformatics tools was performed in mammary tissue from 8 Holstein cows during the entire lactation cycle.
Project description:This article contains raw and processed data related to research published by Swartz et al. [1]. Proteomics data from liver of postpartum dairy cows were obtained by liquid chromatography-mass spectrometry following protein extraction. Differential abundance between liver of cows experiencing either negative energy balance (NEB, n=6) or positive energy balance (PEB, n=4) at 17±3 DIM was quantified using MS1 intensity based label-free. There is a paucity of studies examining the associations of NEB with the liver proteome in early lactation dairy cows. Therefore, our objective was to characterize the differences in the liver proteome in periparturient dairy cows experiencing naturally occurring NEB compared to cows in PEB. In this study, multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter energy balance, and were classified retrospectively as NEB (n=18) or PEB (n=22). Liver biopsies were collected from 10 cows (n=5 from each milking frequency), that were retrospectively classified according to their energy balance (NEB, n=6; PEB, n=4). The liver proteome was characterized using label-free quantitative shotgun proteomics. This novel dataset contains 2,741 proteins were identified, and 68 of those were differentially abundant between NEB and PEB (P≤0.05 and FC±1.5); these findings are discussed in our recent research article [1]. The present dataset of liver proteome can be used as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle.
Project description:Effect of breed in mid lactation Holstein (H) and Montbéliarde (M) cows on mammary glande miRNA profile. Genetic polymorphisms are known to influence milk production and composition. However, genomic mechanisms involved in the genetic regulation of milk component synthesis are not completely understood. MicroRNAs (miRNA) regulate gene expression. The objective of the present study was to compare mammary gland miRNomes of two dairy cow breeds, Holstein and Montbéliarde, with different dairy performances. Milk, fat, protein, and lactose yields were lower in Montbéliarde than in Holstein cows. MiRNomes obtained using RNA-Seq technology from the mammary glands of Holstein (n = 5) and Montbéliarde (n = 6) lactating cows revealed 623 distinct expressed miRNAs, among which 596 were known and 27 were predicted miRNAs. The comparison of their abundance in the mammary gland of Holstein versus Montbéliarde cows showed 22 differentially expressed miRNAs (Padj ≤ 0.05). Among them, 11 presented a fold change ≥2, with 2 highly expressed miRNAs (miR-100 and miR-146b). Without taking into account the fold change, the differential miRNA with the highest abundance was miR-186, which is known to inhibit cell proliferation and epithelial-to-mesenchymal transition. Data mining showed that the 17 differentially expressed miRNAs with more than 20 reads on average, regulate mammary gland plasticity and may be related to the observed differences in milk production between Holstein and Montbéliarde, which are two breeds with different mammogenic potential. Some of the 17 miRNAs could potentially target mRNAs involved in signaling pathways (such as mTOR) and in lipid metabolism, thereby suggesting that they could influence milk composition. In conclusion, we showed differences in mammary gland miRNomes of two dairy bovine breeds. These differences suggest a potential role of miRNAs in mammary gland plasticity and in milk component synthesis related to milk production and composition.
Project description:Milk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein cows, we compared three extraction procedures which have not previously been applied to samples of cows’ milk. Method A (urea) involved a simple dilution of the milk in a urea-based buffer, method B (TCA/acetone) involved a TCA/acetone precipitation and method C (methanol/chloroform) involved a tri-phasic partition method in chloroform/methanol solution. Protein assays, SDS-PAGE profiling, and trypsin digestion followed by nanoHPLC-electrospray ionisation-tandem mass spectrometry (nLC-ESI-MS/MS) analyses were performed to assess their efficiency. Replicates were used at each analytical step (extraction, digestion, injection) to assess reproducibility. Overall 186 unique accessions, major and minor proteins, were identified with a combination of methods. Method C (methanol/chloroform) yielded the best resolved SDS-patterns and highest protein recovery rates, method A (urea) yielded the greatest number of accessions, and, of the three procedures, method B (TCA/acetone) was the least compatible of all with a wide range of downstream analytical procedures. Our results also highlighted breed differences between the proteins in milk of Jersey and Holstein cows.
Project description:Evaluate the influence of maternal metabolism on gene expression profiles from extra-embryonic tissues at D18 Keyword: Holstein Heifers and Postpartum dairy cows, metabolism and energy status, elongation and gastrulation, extra-embryonic tissues, transcriptome, correlations between genes & metabolites?