Project description:To discover the molecules and signal pathways that are associated with the anti-aging effects of Fabp7 deficiency, transcriptome analyses were conducted using DNA microarray. The ABR thresholds of Fabp7 (+/+) and Fabp7 (-/-) mice were not significantly different at 7 months of age, but it was speculated that important gene expression changes might arise at approximately this stage. Therefore, 7-month-old Fabp7 (+/+) and Fabp7 (-/-) mice were used for transcriptome analyses.
Project description:Apolipoprotein 4 (APOE4), is the strongest genetic risk allele associated with the development of late onset Alzheimer’s disease (AD). Across the CNS, astrocytes are the predominant expressor of Apoe while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional neuro-immunometabolism, however insights into the molecular constituents driving these responses remain unclear. Utilizing complimentary approaches across humanized ApoE expressing mice and isogenic IPS astrocytes, we demonstrate that harboring ApoE4 alters astrocyte immunometabolic response to pro-inflammatory stimuli. Our findings demonstrate that ApoE4-expressing astrocytes acquire distinct transcriptional repertoires at the single-cell and spatially-resolved domains, which driven, in-part, by preferential utilization of the cRel transcription factor. Further, inhibiting cRel translocation abrogated inflammatory-induced glycolytic shift and ultimately resulted in significantly dampened glycolysis-associated metabolites in tandem with mitigating production of multiple pro-inflammatory cytokines. Altogether, our findings elucidate novel cellular underpinnings by which ApoE4 drives maladaptive immunometabolic responses of astrocytes.
Project description:Apolipoprotein 4 (APOE4), is the strongest genetic risk allele associated with the development of late onset Alzheimer’s disease (AD). Across the CNS, astrocytes are the predominant expressor of Apoe while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional neuro-immunometabolism, however insights into the molecular constituents driving these responses remain unclear. Utilizing complimentary approaches across humanized ApoE expressing mice and isogenic IPS astrocytes, we demonstrate that harboring ApoE4 alters astrocyte immunometabolic response to pro-inflammatory stimuli. Our findings demonstrate that ApoE4-expressing astrocytes acquire distinct transcriptional repertoires at the single-cell and spatially-resolved domains, which driven, in-part, by preferential utilization of the cRel transcription factor. Further, inhibiting cRel translocation abrogated inflammatory-induced glycolytic shift and ultimately resulted in significantly dampened glycolysis-associated metabolites in tandem with mitigating production of multiple pro-inflammatory cytokines. Altogether, our findings elucidate novel cellular underpinnings by which ApoE4 drives maladaptive immunometabolic responses of astrocytes.
Project description:Patients with epilepsy often experience increased frequency of seizures at night. Given the crucial role glial cells play in modulating neuronal excitability, we hypothesize that circadian changes in glia may affect changes in seizure threshold. Fatty acid binding protein 7 (Fabp7) is expressed in brain astrocytes and is involved in the transport of fatty acids, signal transduction, and gene transcription. Its mRNA expression levels rise and fall in a circadian rhythm and is necessary for normal sleep regulation. We examined if Fabp7 influences electrically induced seizure threshold and differential gene expression in wild type (WT) vs. Fabp7 knockout (KO) mice with and without seizure.
Project description:The goals of this study are to examine responses to inflammation in astrocytes from induced pluripotent stem cells derived from healthy controls and bipolar disorder patients. We examine the transcriptomic inflmmatory signature of generated astrocytes following Il1Beta exposure in BD vs. control Results: BD-patient astrocytes show a unique inflammatory response with differentially regulated genes.
Project description:Apolipoprotein 4 (APOE4), is the strongest genetic risk allele associated with the development of late onset Alzheimer’s disease (AD). Across the CNS, astrocytes are the predominant expressor of Apoe while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional neuro-immunometabolism, however insights into the molecular constituents driving these responses remain unclear. Utilizing complimentary approaches across humanized ApoE expressing mice and isogenic IPS astrocytes, we demonstrate that harboring ApoE4 alters astrocyte immunometabolic response to pro-inflammatory stimuli. Our findings demonstrate that ApoE4-expressing astrocytes acquire distinct transcriptional repertoires at the single-cell and spatially-resolved domains, which driven, in-part, by preferential utilization of the cRel transcription factor. Further, inhibiting cRel translocation abrogated inflammatory-induced glycolytic shift and ultimately resulted in significantly dampened glycolysis-associated metabolites in tandem with mitigating production of multiple pro-inflammatory cytokines. Altogether, our findings elucidate novel cellular underpinnings by which ApoE4 drives maladaptive immunometabolic responses of astrocytes.
Project description:As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream ‘molecular switch’ controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.