Project description:Endophytic fungi are fungi that live inside the roots of plants. They can promote plant growth through a variety of direct and indirect mechanisms. Direct mechanisms include the production of phytohormones, such as auxin and gibberellins, which can stimulate plant growth. Endophytic fungi can also fix nitrogen, solubilize phosphate, and produce siderophores, which are compounds that chelate iron and make it available to plants. In addition, some endophytic fungi produce antimicrobial metabolites that can protect plants from pests and pathogens. Indirect mechanisms include the induction of systemic resistance, which is a plant's ability to defend itself against pests and pathogens. Endophytic fungi can also help plants to tolerate abiotic stresses, such as drought, salinity, and heavy metals. In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, stress response, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:This study was aimed at highlighting the endophytic to the saprophytic adaptive plasticity of B. bassiana. Thus the objective was to elucidate and compare the transcriptome of B. bassiana the fungi under endophytic, saprophytic and basal conditions.
2023-12-31 | GSE221727 | GEO
Project description:RNA-seq of Acanthus ilicifolius L from six tissue parts
Project description:Endophytic fungi are root-inhabiting fungi that can promote plant growth in a variety of ways. They can directly stimulate plant growth by producing phytohormones, such as auxin and gibberellins. They can also indirectly promote plant growth by helping plants to acquire nutrients, such as nitrogen and phosphorus, and by protecting plants from pests and pathogens.In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, nutrient acquisition, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
2024-09-10 | PXD045242 | JPOST Repository
Project description:Diversity of Weed Endophytic Fungi
| PRJNA720924 | ENA
Project description:mulberry endophytic fungi community diversity
| PRJNA496254 | ENA
Project description:Endophytic fungi and bacterial diversity