Project description:We report miRNA profiling in patients with Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS). The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age.
2022-11-17 | GSE214735 | GEO
Project description:EVALUATION OF THE ORAL MICROBIOME IN PATIENTS WITH ALSTROM AND BARDET-BIEDL SYNDROMES
Project description:We characterized the gene expression by Hierarchical Clustering and one-matrix clustering in hESC, day 12 progenitors, day 25-day 27, day82 differentiated hypothalamic neurons from hESCs and day 45 neurons derived from iPSCs generated from controls (2 independent) and BBS (Bardet-Biedl Syndrome, 3 independent) subjects.
Project description:This SuperSeries is composed of the following subset Series: GSE32037: Identification of potential biomarkers for patients with neurodegenerative parkinsonian syndromes using serum cytokine microarray analysis; series 6 GSE32039: Identification of potential biomarkers for patients with neurodegenerative parkinsonian syndromes using serum cytokine microarray analysis; series 7 GSE32040: Identification of potential biomarkers for patients with neurodegenerative parkinsonian syndromes using serum cytokine microarray analysis; series 8 Refer to individual Series
Project description:We investigated the spectra of circulating miRNAs in plasma of myelodysplastic syndromes (MDS) patients. Peripheral blood plasma from MDS patients with different risk scores was used for Agilent miRNA expression microarray analysis to define miRNA profile and to find miRNAs with discriminatory levels for lower risk and higher risk MDS. Results were further validated using droplet digital PCR on a larger cohort, enabling absolute quantification of plasma miRNAs and defining miRNAs with prognostic value for the disease.
Project description:Meckel Syndrome, Nephronophthisis, Joubert Syndrome, and Bardet-Biedl Syndrome have mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes suggesting the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1, and nphp4, as well as mutants in ift88 and ift172. Our data indicate variations in phenotypes exists between different TZ mutants, supporting different tissue specific functions of these TZ genes. Further we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We have also demonstrated that multiple-guide derived CRISPR/Cas9 F0 “Crispant” embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12, and cfap52).
Project description:We investigated the spectra of circulating miRNAs in plasma of myelodysplastic syndromes (MDS) patients. Peripheral blood plasma from MDS patients with different risk scores was used for Agilent miRNA expression microarray analysis to define miRNA profile and to find miRNAs with discriminatory levels for lower risk and higher risk MDS. Results were further validated using droplet digital PCR on a larger cohort, enabling absolute quantification of plasma miRNAs and defining miRNAs with prognostic value for the disease. We analyzed expression profile of circulating miRNAs in plasma from 21 individuals: 7 controls and 14 MDS patients.
Project description:To explore the biological connotation of eight syndromes of Rheumatoid Arthritis (RA) from the syndrome-symptom association network, and the relationship between the clinical characteristics of various syndromes and their key network target genes and pathways, which may offer clinicians auxiliary tools for diagnosis and treatment of RA patients with various traditional Chinese medicine (TCM) syndromes and promoting the developments of TCM Syndrome Theory. We used microarrays to detail the biological connotation of five syndromes (D-H, N) of Rheumatoid Arthritis (RA) and identified distinct classes of up-regulated and down-regulated genes during this process.
Project description:Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and characterized by hyperphagic obesity. We developed a cellular model of BBS using induced pluripotent stem cell (iPSCs)-derived hypothalamic arcuate-like neurons. Single-cell RNA sequencing of iPSC-derived hypothalamic neurons from BBS1M390R and isogenic control identified affected cell subpopulations and several down-regulated pathways in BBS1 hypomorphic neurons, including axon guidance, insulin signaling and cAMP pathway.
Project description:Control of oxidative stress in the bone marrow (BM) is key for maintaining the balance between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an oxidative stress marker in BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox.