Project description:Investigating transcriptional profile of WT, LKB1 KO, and LKB1/CRTC2 KO mouse embryonic fibroblasts untreated or stimulated with IL-1β
Project description:LKB1 encodes a Ser/Thr kinase and acts as an evolutionarily conserved sensor of cellular energy status in eukaryotic cells. LKB1 functions as the major upstream kinase to phosphorylate AMPK and 12 other AMPK-related kinases, which is required for their activation in many cellular contexts. Once activated, AMPK and AMPK-related kinases phosphorylate a diverse array of downstream effectors to switch on ATP-generating catabolic processes and switch off ATP-consuming anabolic processes, thus restoring energy balance during periods of energetic stress. To study the role and mechanisms of Lkb1 in the regulation of hematopoietic stem cell (HSC) biology, we performed transcriptome analysis of sorted LSK (Lin-, Sca-1+, c-Kit+) cells from Lkb1 WT and KO bone marrows at 1 day post-completing tamoxifen injection (DPI). To identify more proximal molecular effects, we chose 1 DPI due to the modest phenotypes in Lkb1 KO mice, yet documentation of efficient Lkb1 deletion in LSK cells at this very early time point. We treated Lkb1 L/L rosa26CreERT2 and Lkb1 L/L mice (C57BL/Ka-CD45.2:Thy-1.1 background) with Tamoxifen for 5 days to somatically delete Lkb1 in adult mice, and generated Lkb1 WT and KO mice. At 1 DPI, we prepared single-cell suspensions from bone marrow (from femoral and tibial bones), and stained and sorted LSK populations using FACSAria (Becton Dickinson, Mountain View, CA). The RNA was extracted from sorted LSK cells, amplified and subjected to gene profiling. The samples include 3 Lkb1 WT (Lkb1 WT 5-7) and 4 Lkb1 KO (Lkb1 KO 4-7) replicates.
Project description:LKB1 encodes a Ser/Thr kinase and acts as an evolutionarily conserved sensor of cellular energy status in eukaryotic cells. LKB1 functions as the major upstream kinase to phosphorylate AMPK and 12 other AMPK-related kinases, which is required for their activation in many cellular contexts. Once activated, AMPK and AMPK-related kinases phosphorylate a diverse array of downstream effectors to switch on ATP-generating catabolic processes and switch off ATP-consuming anabolic processes, thus restoring energy balance during periods of energetic stress. To study the role and mechanisms of Lkb1 in the regulation of hematopoietic stem cell (HSC) biology, we performed transcriptome analysis of sorted LSK (Lin-, Sca-1+, c-Kit+) cells from Lkb1 WT and KO bone marrows at 1 day post-completing tamoxifen injection (DPI). To identify more proximal molecular effects, we chose 1 DPI due to the modest phenotypes in Lkb1 KO mice, yet documentation of efficient Lkb1 deletion in LSK cells at this very early time point.
Project description:Investigating transcriptional profile of WT and LKB1 knockout mouse embryonic fibroblasts untreated, stimulated with IL-1β, treated with A485 alone, or stimulated with IL-1β and A485
Project description:The goals of this study was to compare hepatic transcriptome profiling (RNA-seq) in wild type (WT) and Liver Kinase B1 knock out (LKB1 KO) mice Methods: hepatocyte mRNA profiles of 10-weeks-old WT and LKB1 KO mice were generated, in triplicate, using Illumina NextSeq technology. The sequence reads that passed quality filters were analyzed at the gene level.