Project description:Concerns over Klebsiella pneumoniae resistance to the last-line antibiotic treatment have prompted a reconsideration of bacteriophage therapy in public health. Biotechnological application of phages and their gene products as an alternative to antibiotics necessitates the understanding of their genomic context. This study sequenced, annotated, characterized, and compared two Klebsiella phages, KP1 and KP12. Physiological validations identified KP1 and KP12 as members of Myoviridae family. Both phages showed that their activities were stable in a wide range of pH and temperature. They exhibit a host specificity toward K. pneumoniae with a broad intraspecies host range. General features of genome size, coding density, percentage GC content, and phylogenetic analyses revealed that these bacteriophages are distantly related. Phage lytic proteins (endolysin, anti-/holin, spanin) identified by the local alignment against different databases, were subjected to further bioinformatic analyses including three-dimensional (3D) structure prediction by AlphaFold. AlphaFold models of phage lysis proteins were consistent with the published X-ray crystal structures, suggesting the presence of T4-like and P1/P2-like bacteriophage lysis proteins in KP1 and KP12, respectively. By providing the primary sequence information, this study contributes novel bacteriophages for research and development pipelines of phage therapy that ultimately, cater to the unmet clinical and industrial needs against K. pneumoniae pathogens.
| S-EPMC9902359 | biostudies-literature
Project description:Plant Growth Promoting Bacteria as Biofertilizers
| PRJNA1150811 | ENA
Project description:Illumina sequencing of plant growth promoting bacteria
| PRJNA834937 | ENA
Project description:Plant growth promoting bacteria impact on soil salinity and plant growth
Project description:Bacteria can circumvent the effect of antibiotics by transitioning to a poorly understood physiological state that does not involve conventional genetic elements of resistance. Here we examine antibiotic susceptibility with a Class A β-lactamase+ invasive strain of Klebsiella pneumoniae that was isolated from a lethal outbreak within laboratory colonies of Chlorocebus aethiops sabaeus monkeys. Bacterial responses to the ribosomal synthesis inhibitors streptomycin and doxycycline resulted in distinct proteomic adjustments that facilitated decreased susceptibility to each antibiotic.
Project description:Possitive effects of plant growth promoting bacteria (PGPB) inoculation on plant growth and development are dependent on interaction between bacterial strains and plant roots, which are usually the bacterial niche. Furthermore, phytohormones are key regulators of plant physiology. Ethylene is essential in plant growth and development and in response to drought. Plant sensibility to ethylene is involved in plant response to PGPB strain inoculation and plant growth promotion. We used microarrays to detail the global programme of gene expression underlying plant interaction with two different PGPB strains (isolated from arid soils in southern Spain) regarding to plant sentitivity to ethylene by tomato ethylene receptor 3 (SlETR3).