ABSTRACT: Effects of intercropping with sugarcane and peanut on fungal communities in rhizosphere and bulk soil of crops (two experimental sites x two seasons)
Project description:Effects of Intercropping Sugarcane and Peanut on Crops Rhizosphere and Bacterial Community Trenching in bulk Soil (two experimental sites x two seasons)
Project description:Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. Proteomic studies of the differences in peanut leaves, maize leaves and maize roots between intercropping and monocropping systems indicated that peanut/maize intercropping not only improves Fe availability in the rhizosphere but also influences the levels of proteins related to carbon and nitrogen metabolism. Moreover, intercropping may enhance stress resistance in the peanut plant (Xiong et al. 2013b). Although the mechanism and molecular ecological significance of peanut/maize intercropping have been investigated, little is known about the genes and/or gene products in peanut and maize roots that mediate the benefits of intercropping. In the present study, we investigated the transcriptomes of maize roots grown in intercropping and monocropping systems by microarray analysis. The results enabled exploration differentially expressed genes in intercropped maize. Peanut (Arachis hypogaea L. cv. Luhua14) and maize (Zea mays L. cv. Nongda108) seeds were grown in calcareous sandy soil in a greenhouse. The soil was enhanced with basal fertilizers [composition (mg·kg−1 soil): N, 100 (Ca (NO3)2·4H2O); P, 150 (KH2PO4); K, 100 (KCl); Mg, 50 (MgSO4·7H2O); Cu, 5 (CuSO4·5H2O); and Zn, 5 (ZnSO4·7H2O)]. The experiment consisted of three cropping treatments: peanut monocropping, maize monocropping and intercropping of peanut and maize. After germination of peanut for 10 days, maize was sown. Maize samples were harvested after 63 days of growth of peanut plants based on the degree of Fe chlorosis in the leaves of monocropped peanut. The leaves of monocropped peanut plants exhibited symptoms of Fe-deficiency chlorosis at 63 days, while the leaves of peanut plants intercropped with maize maintained a green color.
2017-01-24 | GSE93771 | GEO
Project description:sugarcane and peanut intercropping
Project description:Intercropping is a sustainable agricultural practice widely used around the world for enhancing resource use efficiency. However, short crops often grow in shade condition underneath the canopy of tall crops. Soybean is one of the most important oil crops and usually is planted in intercropping patterns. However, little is known about the acclimation responses of soybean leaves to shade in intercropping condition at the transcriptome level.
Project description:Monoculture, root separation intercropping and conventional intercropping reveal the signal exchange response of crops in sugarcane-peanut intercropping system
Project description:To identify peanut Aspergillus-interactive and Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project followed by a peanut microarray study. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. Microarray analysis identified 65 and 1 genes in resistant (C20) and susceptible (TF) cultivars, respectively, that were up-regulated in response to Aspergillus infection. In addition we identified 40 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes previously shown to confer resistance to fungal infection. These results provide a comprehensive genome-scale platform for future studies focused on developing Aspergillus-resistant peanut cultivars through conventional breeding, marker-assisted breeding, or biotechnological methods by gene manipulation. Four samples were analyzed with four hybs. Two samples were obtained from resistant (C20) and and susceptible (TF) cultivars. Two factors were varied in the experimental design: (i) peanut cultivars (resistant (GT-C20) and susceptible (TF)) and (ii) Aspergillus exposure. A combination of these factors produced four hybridizations as follows: (1) C20Y vs. TFY (GT-C20 infected vs. TF infected) (2) C20Y vs. C20N (GT-C20 infected vs. not infected) (3) TFY vs. TFN (TF infected vs. not infected) (4) C20N vs. TFN (GT-C20 not infected vs. TF not infected)
Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
Project description:Aspergillus flavus is one of the major fungal molds that colonize peanut in the field and during storage. The impact to human and animal health and to economy in agriculture and commerce are significant since this mold produces the most potent natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect to inhibit aflatoxin formation through down-regulating aflatoxin pathway gene expression in A. flavus as demonstrated by genechip analysis in liquid medium and peanuts. The results showed that aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98%) inhibited by B. megaterium. The expression of many of the aflatoxin biosynthetic genes in the fungus was confirmed to be turned down. Some of the target genes down-regulated by B. megaterium within the whole genome and within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX) were identified. These target genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was found to be significantly down-regulated. The effect of B. megaterium on aflatoxin biosynthesis and genes expression of pathogen was firstly tested in potato dextrose broth (PDB) and glucose minimal salts medium (MM). The cell suspension of B. megaterium (concentration in PDB and MM was finally adjusted to 108 CFU/ml) or sterile distilled water as a control was added into the 100 ml beaker flask containing 15 ml PDB or MM, respectively. Then 100 M-NM-<l of spore suspension (5 M-CM-^W 106 spores/ml) of A. flavus were added into each beaker flask. After 48 h of incubation at 28M-BM-0C at 200 rpm, mycelia were collected, fresh frozen with liquid nitrogen, ground to a fine powder in liquid nitrogen, and stored at -80M-BM-0C for further analysis. The effect of B. megaterium on aflatoxin biosynthesis and genes expression in the A. flavus fungal pathogen was also tested in two types of peanut kernels, UF 715133-1 and Jinhua 1012, respectively. Peanut kernels were wounded (6 mm diameter and approximately 3 mm deep) using a sterile borer and then 20 M-NM-<l of 1 M-CM-^W 108 CFU/ml cell suspension of B. megaterium was inoculated on wounded peanut kernels respectively. Sterile distilled water was also used for inoculation as control. Two hours after bacterial inoculation, 10 M-NM-<l A. flavus spore suspension was inoculated into each wound at a concentration of 106 spores/ml. The kernels were placed in artificial weather chamber to maintain high humidity (85%) and incubated at 28M-BM-0C for 7 days. Each treatment was replicated three times with 20 peanut kernels in each test. The mycelia on kernels were harvested at day 7 and fresh frozen immediately in liquid nitrogen, ground into powder, and stored at -80M-BM-0C for further analysis.