Project description:The yeast strain Moniliella spathulata SBUG-Y 2180 was isolated from oil-contaminated soil at the Tengiz oil field in the Atyrau region of Kazakhstan on the basis of its unique ability to use crude oil and its components as the sole carbon and energy source. This yeast used a large number of hydrocarbons as substrates (more than 150), including n-alkanes with chain lengths ranging from C10 to C32, monomethyl- and monoethyl-substituted alkanes (C9 – C23), n-alkylcyclo alkanes with alkyl chain lengths from 3 to 24 carbon atoms as well as substituted monoaromatic and diaromatic hydrocarbons. Metabolism of this huge range of hydrocarbon substrates produced a very large number of aliphatic, alicyclic and aromatic acids. 51 of these were identified by GC/MS analyses. This is the first report of the degradation and of the formation of such a large number of compounds by a yeast. Inoculation of barley seeds with M. spathulata SBUG-Y 2180 had a positive effect on shoot and root development of plants grown in oil-contaminated sand, pointing towards potential applications of the yeast in bioremediation of polluted soils.
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
Project description:Glehnia littoralis is a perennial herb growing on the sandy beaches. In this study, high-throughput sequencing of small RNA was performed to identify miRNAs and their response to salt stress in G. littoralis. As a result, 37 conserved miRNAs belonging to 13 families and 37 novel miRNAs were identified. Among the 74 miRNAs, the expression levels of miR-156b*, miR-171, miR-171*, and miR-319 were downregulated and that of miR-399a, miR-399a*, miR-399b, miR-399b*, novel-9 and novel-14* were upregulated under salt stress. Target prediction of salt-responsive miRNAs indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as SPLs. However, a lot of target genes of salt-responsive miRNAs were uncharacterized, which implied that there might be some new miRNA-mediated reguatory of salt response in G. littoralis.
Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison
2008-10-20 | GSE10920 | GEO
Project description:Potential bacteria for bioremediation of waste lubricating oil contaminated soil
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically. Agilent one-color CGH experiment and one-color Gene Expresssion expereiment,Organism: Genotypic designed Agilent-17159 Genotypic designed Agilent Multibacterial 8x15k Array , Labeling kits: Agilent Genomic DNA labeling Kit (Part Number: 5190-0453) and Agilent Quick Amp Kit PLUS (Part number: 5190-0442).
Project description:Glehnia littoralis is a perennial herb growing on the sandy beaches. In this study, high-throughput sequencing of small RNA was performed to identify miRNAs and their response to salt stress in G. littoralis. As a result, 37 conserved miRNAs belonging to 13 families and 37 novel miRNAs were identified. Among the 74 miRNAs, the expression levels of miR-156b*, miR-171, miR-171*, and miR-319 were downregulated and that of miR-399a, miR-399a*, miR-399b, miR-399b*, novel-9 and novel-14* were upregulated under salt stress. Target prediction of salt-responsive miRNAs indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as SPLs. However, a lot of target genes of salt-responsive miRNAs were uncharacterized, which implied that there might be some new miRNA-mediated reguatory of salt response in G. littoralis. Small RNA profiles of G. littoralis under control (CK), salt stress (SS) and (RS)