Project description:Porcine reproductive and respiratory disease (PRRS) is the most important disease in swine industry worldwide. However, strategies such as vaccination and good biosecurity are not consistently successful to eliminate PRRSV. Though some interesting pathways have been tentatively examined recently, host molecular pathways utilized by PRRSV and the protective immune responses in resistant to PRRSV are largely unknown. In order to answer these questions, we herein characterize changes in global gene expressions in multiple tissues [tonsil, tracheobronchial lymph nodes (TBLN), Cranial lung (CR Lung), and distal lung (D Lung)] in response to PRRSV of high and low virulence. Both vaccinated and unvaccinated pigs are used for this study. Based on Ingenuity Pathway Analysis (IPA), molecule bases of some “black boxes” underlying immune responses are further identified. Our results indicate that cross talks among these pathways and immune balances/competition between host and virus are always happened during the pathogenesis of PRRS. connected loop design was used to accommodate samples from 4 treatment groups.
Project description:Porcine reproductive and respiratory disease (PRRS) is the most important disease in swine industry worldwide. However, strategies such as vaccination and good biosecurity are not consistently successful to eliminate PRRSV. Although some gene expression pathways have been explored recently, host molecular pathways blocked by PRRSV and the protective immune response expressed in pigs resistant to PRRSV are largely unknown. In order to answer these questions, we herein characterize changes in blood gene expression in pigs responding differentially to infection with a well characterized type 2 (North American) PRRSV isolate. Samples are those collected through the PRRS Host Genetics Consortium (PHGC). Samples were those from Tempus tube collected blood of PHGC pigs selected from four response groups according to their serum viral load (0-21 days post infection) and weight gain (0-42 dpi) and characterized as low vs. high viral load and low vs high weight gain . block reference design was used to accommodate samples from 4 treatment groups.
Project description:Porcine reproductive and respiratory disease (PRRS) is the most important disease in swine industry worldwide. However, strategies such as vaccination and good biosecurity are not consistently successful to eliminate PRRSV. Though some interesting pathways have been tentatively examined recently, host molecular pathways utilized by PRRSV and the protective immune responses in resistant to PRRSV are largely unknown. In order to answer these questions, we herein characterize changes in global gene expressions in multiple tissues [tonsil, tracheobronchial lymph nodes (TBLN), Cranial lung (CR Lung), and distal lung (D Lung)] in response to PRRSV of high and low virulence. Both vaccinated and unvaccinated pigs are used for this study. Based on Ingenuity Pathway Analysis (IPA), molecule bases of some “black boxes” underlying immune responses are further identified. Our results indicate that cross talks among these pathways and immune balances/competition between host and virus are always happened during the pathogenesis of PRRS.
Project description:Porcine reproductive and respiratory disease (PRRS) is the most important disease in swine industry worldwide. However, strategies such as vaccination and good biosecurity are not consistently successful to eliminate PRRSV. Although some gene expression pathways have been explored recently, host molecular pathways blocked by PRRSV and the protective immune response expressed in pigs resistant to PRRSV are largely unknown. In order to answer these questions, we herein characterize changes in blood gene expression in pigs responding differentially to infection with a well characterized type 2 (North American) PRRSV isolate. Samples are those collected through the PRRS Host Genetics Consortium (PHGC). Samples were those from Tempus tube collected blood of PHGC pigs selected from four response groups according to their serum viral load (0-21 days post infection) and weight gain (0-42 dpi) and characterized as low vs. high viral load and low vs high weight gain .