Project description:In this new study, we analyzed the blood transcriptome of horses housed individually that were first examined for their behavior, health and microbiota. We performed differential and regression analyzes of gene expression to unveil the molecular pathways related to the behavioural changes associated with housing horses in individual boxes. This study shows that aggressiveness towards humans and stereotypies are behavioural indicators that covary with physiological alterations.
Project description:The improvement of horse welfare through housing conditions has become a real issue in recent years and have highlighted the detrimental effect of individual housing of horses on their health and behaviour. In this new study, we analysed the blood transcriptome of 45 sport horses housed individually that were previously examined for their behaviour and gut microbiota. We performed differential and regression analyses of gene expression, followed by downstream bioinformatic analyses, to unveil the molecular pathways related to the behavioural changes associated with welfare impairment in these sport horses. We found that aggressiveness towards humans was the behavioural indicator the most correlated to blood gene expression and that the pathways involved belonged mainly to systemic inflammation. In contrast, the correlations between genes, alert postures and unresponsiveness towards the environment were weak. When blood gene expression profiling was combined with faecal microbiota of a sub-population of horses, stereotypies came out as the most correlated to blood gene expression. This study shows that aggressiveness towards humans and stereotypies are behavioural indicators that covary with physiological alterations. Further studies are needed regarding the biological correlates of unresponsiveness to the environment and alert postures.
Project description:Social experience influences multiple behaviors of many animal species, including aggression. Social isolation often increases aggressiveness. To investigater the molecular basis of social influences on aggressiveness, we performed comparative gene expression profiling on heads from 6-day-old, single-housed, more aggressive and group-housed, less aggressive male flies. Keywords: social experience
Project description:Horses are mainly housed in individual boxes. This housing system is reported to be highly detrimental with regard to welfare and could trigger the expression of four behavioural indicators of a compromised welfare state: stereotypies, aggressiveness toward humans, unresponsiveness to the environment, and stress-related behaviours. The aim of this study was to identify housing and management factors that could alleviate the detrimental effects of individual boxes on welfare. A total of 187 horses were observed over 50 days by scan sampling. The impact of 12 factors was investigated on the expression of the four behavioural indicators in three different analyses. The results show that the majority of factors tested did not influence the expression of the behavioural indicators. Only three (straw bedding, a window opening onto the external environment, and a reduced quantity of concentrated feed) would have beneficial, although limited, effects. Furthermore, the longer the horses spent in individual boxes, the more likely they were to express unresponsiveness to the environment. To preserve the welfare of horses, it seems necessary to allow free exercise, interactions with conspecifics, and fibre consumption as often as possible, to ensure the satisfaction of the species' behavioural and physiological needs.
Project description:The purpose of this experiment was to further our understanding of gene expression in the central nervous system (thalamus and cerebrum) after exposure to West Nile virus. To that end, three different analyses were performed. The first examined differences in gene expression between horses not vaccinated and exposed to WNV and normal control horses (exposure). The second examined differences in gene expression between horses not vaccinated and exposed to WNV and horses vaccinated and exposed to WNV (survival). And the third examined differences between the nonvaccinated cerebrum and nonvaccinated thalamus of horses exposed to WNV (location). Six conditions- Gene expression in the thalamus and cerebrum of three different groups of horses (Non-vaccinated horses exposed to West Nile virus, Vaccinated horses exposed to West Nile virus, normal horses not exposed to West Nile virus). Biological replicates- 6 normal cerebrums, 6 normal thalamus, 6 vaccinated and exposed cerebrums, 6 vaccinated and exposed thalamus, 6 non-vaccinated and exposed cerebrum, 6 non-vaccinated and exposed thalamus.
Project description:The purpose of this experiment was to further our understanding of gene expression in the central nervous system (thalamus and cerebrum) after exposure to West Nile virus. To that end, three different analyses were performed. The first examined differences in gene expression between horses not vaccinated and exposed to WNV and normal control horses (exposure). The second examined differences in gene expression between horses not vaccinated and exposed to WNV and horses vaccinated and exposed to WNV (survival). And the third examined differences between the nonvaccinated cerebrum and nonvaccinated thalamus of horses exposed to WNV (location).
Project description:Purpose: Next-generation sequencing (NGS) was used to select genes potentially associated with exercise adaptation in Arabian horses. Methods: Whole transcriptome profiling of blood was performed for untrained horses and horses from which samples were collected during at 3 different periods of training procedure (T1-during intense training period - March, T2- before starts - May and T3 -after flat racing season - October). The muscle transcriptome sequencing was performed for 37 blood samples using Illumina HiScan SQ in 75 single-end cycles. The quantifying transcript abundances was made using the RSEM supported by STAR aligner. The raw reads were aligned to the Equus caballus reference genome. Differentially expressed genes in blood tissue were detected by DESeq2. The RNA-seq results were validated using by qPCR. Results: The increase of the number of DEGs between subsequent training periods has been observed and the highest amount of DEGs was detected between untrained horses (T0) and horses at the end of the racing season (T3) â 440. The comparison of transcriptome of T2 vs T3 and T0 vs T3 showed a significant advantage of up-regulated genes during long-term exercise (up-regulation of 266 and 389 DEGs in T3 period compared T2 and T0; respectively). Our results showed that the largest number of identified genes encoded transcription factors, nucleic acid binding proteins and G-protein modulators, which mainly were transcriptional activated at the last training phase (T3) . Moreover, in the T3 period the identified DEGs represented genes coded for cytoskeletal proteins including actin cytoskeletal proteins and kinases. The most abundant exercise-upregulated genes were involved in pathways important in regulating the cell cycle (PI3K-Akt signaling pathway), cell communication (cAMP-dependent pathway), proliferation, differentiation and apoptosis as well as immunity processes (Jak-STAT signaling pathway). We also observed exercise induced expression of genes related in regulation of actin cytoskeleton, gluconeogenesis (FoxO signaling pathway; Insulin signaling pathway), glycerophospholipid metabolism and calcium signaling. Conclusions: TOur results allow to identify changes in genes expression profile following training schedule in Arabian horses. Based on comparison analysis of blood transcriptomes, several exercise-regulated pathways and genes most affected by exercise were detected. We pinpointed overrepresented molecular pathways and genes essential for exercise adaptive response via maintaining of body homeostasis. The observed transcriptional activation of such gene as LPGAT1, AGPAT5, PIK3CG, GPD2, FOXN2, FOXO3, ACVR1B and ACVR2A can be a base for further research in order to identify genes potentially associated with race performance in Arabian horses. Such markers will be essential to choice the training type, and could result in differences in racing performance specific to various breeds. The blood transcriptome sequencing was performed for 37 samples collected form Arabian horses using Illumina HiScan SQ in75 single-end cycles and in 3-4 technical repetitions.repetitions.
Project description:We undertook gene expression microarray experiments to identify genes that are differentially expressed in heaves-affected horses versus matched controls. Mediastinal (pulmonary-draining) lymph nodes were sterilely obtained from affected and control horses, dissected, and frozen at -80oC. RNA was extracted from these tissues for downstream applications. These experiments utilized a commercially available Agilent horse array that featured >43,000 probes on a 4x44k array format. Mediastinal lymph node RNA from seven heaves-affected horses was compared to matching RNA from healthy, normal control horses.
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilentâs Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilentâs Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses. Three healthy, gelding warmblood horses between 9 and 17 yr were selected. 6 samples were collected containing 3 samples before exercise and 3 samples after exercise