Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:Pseudomonas aeruginosa is an opportunistic pathogen which causes acute and chronic infections that are difficult to treat. Comparative genomic analysis has showed a great genome diversity among P. aeruginosa clinical strains and revealed important regulatory traits during chronic adaptation. While current investigation of epigenetics of P. aeruginosa is still lacking, understanding the epigenetic regulation may provide biomarkers for diagnosis and reveal important regulatory mechanisms. The present study focused on characterization of DNA methyltransferases (MTases) in a chronically adapted P. aeruginosa clinical strain TBCF10839. Single-molecule real-time sequencing (SMRT-seq) was used to characterize the methylome of TBCF. RCCANNNNNNNTGAR and TRGANNNNNNTGC were identified as target motifs of DNA MTases, M.PaeTBCFI and M.PaeTBCFII, respectively.
Project description:Chronic Pseudomonas aeruginosa infections evades antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P.aeruginosa towards clinically relevant antibiotics leads to phenotypic convergence towards distinct states. These states are associated with collateral sensitivity towards several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In depth investigation of chronic P.aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.
Project description:We compared untreated HCC1419 cells with Lapatinib resistant HCC1419 cells that were either treated with Lapatinib for only 9 days before harvesting (drug tolerant persisters, DTPs) or were growing in the presence of Lapatinib (>70 days) (drug tolerant expanded persisters, DTEPs). We show that the Notch pathway is significantly over-expressed in DTEPs when compared to untreated cells.
Project description:A shaving proteomic approach was applied to explore surface protein expression of multi- and pan-drug resistant strains of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients with long-term chronic colonization compared to wild-type antibiotic-sensitive strains isolated from patients with recent infection.
Project description:We compared untreated HCC1419 cells with Lapatinib resistant HCC1419 cells that were either treated with Lapatinib for only 9 days before harvesting (drug tolerant persisters, DTPs) or were growing in the presence of Lapatinib (>70 days) (drug tolerant expanded persisters, DTEPs). We show that the Notch pathway is significantly over-expressed in DTEPs when compared to untreated cells. RNA-Seq of HCC1419 cells either untreated, treated with 1?M Lapatinib for 9 days or treated with 1?M Lapatinib for greater than 70 days
Project description:Drug resistance and tolerance eliminate the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. To uncover antibiotic tolerance mechanisms in biofilms, we applied stable isotope labeling with amino acids (SILAC) proteomics to selectively label and compare proteomes of sensitive and tolerant subpopulations of biofilms formed by Pseudomonas aeruginosa towards colistin, a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens. Migration was essential in forming colistin-tolerant biofilm subpopulations, as colistin-tolerant cell-aggregates migrated with type IV pili, onto the top of killed biofilm. The colistin-tolerant cell-aggregates employed quorum sensing (QS) to initiate the formation of fresh colistin-tolerant subpopulations, highlighting multicellular behavior in antibiotic tolerance development. Erythromycin treatment which inhibits motility and QS, boosted biofilm eradication by colistin. This novel ‘-omics’ strategy to study antibiotic tolerant cells provides key insights for designing novel treatments against infections unsuppressed by conventional antimicrobials.
Project description:Pseudomonas aeruginosa (P. aeruginosa) can cause severe acute infections, including pneumonia and sepsis, and also cause chronic infections commonly in patients with structural respiratory diseases. However, the molecular and pathophysiological mechanisms of P. aeruginosa respiratory infection are largely unknown. Here, we profiled performed to assay for transposase-accessible chromatin using sequencing (ATAC-seq), transcriptomics, and quantitative mass spectrometry-based proteomics and ubiquitin-proteomics in P. aeruginosa-infected lung tissues for multi-omics analysis, while ATAC-seq and transcriptomics were also examined in P. aeruginosa-infected mouse macrophages. To find the pivotal transcription factors that are likely involved in host immune defense, we integrally investigated systematic changes in chromatin accessibility and gene expression in P. aeruginosa-infected lung tissues combined with proteomics and ubiquitin-proteomics studies. We discovered that Stat1 and Stat3 were altered in various omics and found similar results in mouse alveolar macrophages. Taken together, these findings indicate that these crucial transcription factors and their downstream signaling molecules play a critical role in the mobilization of host immune response against P. aeruginosa infection and may serve as potential targets for bacterial infections and inflammatory diseases, as well as provide clear insights and resources for using integrative histological analyses.