Project description:To investigate effects of intake of mulberry leaf extracts on hypercholesterolemia, we performed gene expression profiling on rat liver by microarray analysis. Microarray analysis revealed that mulberry leaf extracts up-regulated the gene expression involved in suppression of cholesterol synthesis and stimulation of innate-adaptive Immunity. Mice were fed a high-cholesterol diet without/with orally administration of mulberry leaf extracts for 4 weeks. Livers were taken for RNA extraction and hybridization on Agilent microarrays.
Project description:Bacterial wilt, caused by the soil-borne bacterium Ralstonia solanacearum, is a lethal disease of mulberry, but the molecular mechanisms of the host resistance responses to R. solanacearum remain unclear. In order to better understand molecular resistance mechanisms to R. solanacearum in mulberry, we set out to define the changes in gene expression of resistance and susceptible mulberry cultivars after inoculation with R. solanacearum. Susceptible cultivar YSD10, resistance cultivar KQ10 and YS283 were inoculation with R. solanacearum, mulberry root samples were collected at 1 dpi and non-treated control in all cultivars. Then we performed RNA-Seq analyses on all mulberry root samples using Illumina HiSeq 2000.
Project description:Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species (Morus notabilis C. K. Schneider). In the 330 Mb genome assembly of M. notabilis, we identified 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which were supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating its spread to Europe, Africa, and America. It is among few eudicots but several Rosales not preserving genome duplications in more than 100 million years – however neopolyploid series in mulberry and several others suggest that new duplications may confer benefits. Strikingly, five predicted mulberry miRNAs were found in the hemolymph and silkglands of silkworm, suggesting profound molecular level interactions that promise to expand knowledge of plant-herbivore relationship which constitute key elements of most terrestrial habitats. In addition, we investigated the characters of hemolymph small RNA. small mRNA profiles of silkworm hemolymph in the fifth instar day-5 silkworm were generated by deep sequencing, in twice, using Illumina Hiseq 2000.
Project description:Mulberry (Morus atropurpurea) is an important economic woody tree with rapid growth rate and large biomass, which had great potential for heavy metals remediation. To further understand the mechanisms involved in cadmium accumulation and detoxification in mulberry, we carried out a transcriptomic study to get insights into the molecular mechanisms of the mulberry response to cadmium stress using RNA-seq analysis with BGISEQ-500.
Project description:Ciboria carunculoides is a major fungal pathogen that infect of mulberry fruit causing popcorn disease leading extensive damage and productivity loss. In spite of such a major impact, mulberry fruit response to C. carunculoides infection is yet to be witnessed. We carried out a transcriptomic study to get insights into the molecular mechanisms and dynamics of the mulberry fruit response to the C. carunculoides infection using RNA-seq analysis with Illumina HiSeq 2000.
Project description:To investigate effects of intake of mulberry leaves on hyperlipidemia, we performed gene expression profiling on rat liver by microarray analysis. Microarray analysis revealed that mulberry leaves up-regulated the genes involved in alpha-, beta-, and omega-oxidation of fatty acids, mainly relating to peroxisome proliferator-activated receptor signaling pathway, and down-regulated the gene expression involved in lipogenesis. Furthermore, the genes relating to response to oxidative stress were up-regulated in rats administrated mulberry leaves.