Project description:Self-sufficiency (autonomy) in growth signaling, the earliest recognized hallmark of cancer, is fuelled by the tumor cell’s ability to ‘secrete-and-sense’ growth factors; this translates into cell survival and proliferation that is self-sustained by auto-/paracrine secretion. Using breast cancer cells that are either endowed or impaired in growth signaling autonomy, here we reveal how autonomy impacts cancer progression. Autonomy is associated with enhanced molecular programs for stemness, immune evasiveness, proliferation, and epithelial-mesenchymal plasticity (EMP). Autonomy is both necessary and sufficient for anchorage-independent growth factor-restricted proliferation and resistance to anti-cancer drugs and is required for metastatic progression. Transcriptomic and proteomic studies show that autonomy is associated with self-sustained EGFR/ErbB signaling. A gene expression signature is derived (a.k.a., autonomy signature) which revealed that autonomy is induced in circulating tumor cells (CTCs) and particularly CTC clusters, the latter of which carry higher metastatic potential. Autonomy in CTCs tracks therapeutic response and prognosticates outcome. Autonomy is preserved during reversible (but not stable) EMT. These data support a role for growth signaling autonomy in multiple processes essential for the blood-borne dissemination of human breast cancer.
Project description:Self-sufficiency (autonomy) in growth signaling, the earliest recognized hallmark of cancer, is fuelled by the tumor cell’s ability to ‘secrete-and-sense’ growth factors; this translates into cell survival and proliferation that is self-sustained by auto-/paracrine secretion. Using breast cancer cells that are either endowed or inept in growth signaling autonomy, here we reveal how tumor cell autonomy impacts cancer progression. Autonomy is associated with enhanced molecular programs for stemness, immune evasiveness, and epithelial-mesenchymal plasticity (EMP) across the entire mesenchymal spectrum. Autonomy is both necessary and sufficient for anchorage-independent growth factor-restricted growth, resistance to anti-cancer drugs and metastatic progression. Transcriptomic and proteomic studies show that autonomy is associated with self-sustained EGFR/ERBB signaling, a required signal for re-epithelialization. A gene expression signature was derived (a.k.a., autonomy signature) which revealed that autonomy is induced in circulating tumor cells (CTCs), the precursor tumor cells that re-epithelialize to initiate metastases. Autonomy in CTCs tracks therapeutic response and prognosticates outcome. Autonomy is present during reversible (but not stable) EMT and requires EGFR/ERBB signaling. These data support a role for growth signaling autonomy in the blood-borne dissemination of human breast cancer.
Project description:Thyroid autonomy is a frequent cause of thyrotoxicosis in regions with iodine deficiency. Epidemiological data suggest that the prevalence of thyroid autonomy is not only inversely correlated with the ambient iodine supply, but that iodide may also influence the course of pre-existing thyroid autonomy with possibly different effects on thyroid growth and function. Iodine slows TSH effects on thyroid growth stimulation and this effect is more pronounced in thyrocytes with constitutive cAMP activation i.e. in thyroid autonomy. Iodine induced growth alteration in early stage thyroid autonomy is conferred by induction of apoptosis and G2/M arrest. Transcriptome analysis revealed significant modulation of gene networks relevant to cell adhesion, cadherin signalling and ion binding with more pronounced effects in constitutively active FRTL-5 cells compared to normal FRTL-5 cells. The aim was to study iodide-induced changes in global gene expression in an in vitro model of thyroid autonomy. This model makes use of FRTL-5 cells with stable expression of a constitutively activating TSH receptor mutation or wild type TSHR as a control.
Project description:Thyroid autonomy is a frequent cause of thyrotoxicosis in regions with iodine deficiency. Epidemiological data suggest that the prevalence of thyroid autonomy is not only inversely correlated with the ambient iodine supply, but that iodide may also influence the course of pre-existing thyroid autonomy with possibly different effects on thyroid growth and function. Iodine slows TSH effects on thyroid growth stimulation and this effect is more pronounced in thyrocytes with constitutive cAMP activation i.e. in thyroid autonomy. Iodine induced growth alteration in early stage thyroid autonomy is conferred by induction of apoptosis and G2/M arrest. Transcriptome analysis revealed significant modulation of gene networks relevant to cell adhesion, cadherin signalling and ion binding with more pronounced effects in constitutively active FRTL-5 cells compared to normal FRTL-5 cells.
Project description:Tumor heterogeneity resulting from clonal evolution is a frequent feature in clear cell renal cell carcinoma (ccRCC) and could play a role in metastatic dissemination. However, the dynamics of metastatic evolution is not completely elucidated and could follow a complex seeding process. Using a unique experimental design with a rare matched primary-metastatic case prior to any medical treatment, we retraced the lineage of metastatic clones that showed a complex, multiple, polyphyletic seeding of two functionally interdependent subclonal populations originating from the primary tumor, in the direction of all metastatic sites.
Project description:Tumor heterogeneity resulting from clonal evolution is a frequent feature in clear cell renal cell carcinoma (ccRCC) and could play a role in metastatic dissemination. However, the dynamics of metastatic evolution is not completely elucidated and could follow a complex seeding process. Using a unique experimental design with a rare matched primary-metastatic case prior to any medical treatment, we retraced the lineage of metastatic clones that showed a complex, multiple, polyphyletic seeding of two functionally interdependent subclonal populations originating from the primary tumor, in the direction of all metastatic sites.