Project description:This SuperSeries is composed of the following subset Series: GSE33374: Expression data from healthy human CD161++CD8aa and CD161++CD8ab T cells GSE33424: Expression data from human cord blood CD161++/CD161+/CD161- CD8+ T cell subsets Refer to individual Series
Project description:We used microarray to compare gene expression between CD161++/CD161+/CD161-CD8+ T cells from human cord blood. Lymphocytes from freshly obtained human cord blood samples were isolated by Ficoll density centrifugation. CD8+ T cells were purified by negative selection using magnetic beads and subsequently labelled with fluorescent antibodies prior to sorting using MoFlo MLS cell sorter (Dako).
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:T lymphocytes are conventionally divided into subsets based upon expression of co-receptors, cytokines and surface molecules. By mRNA microarray analysis, T lymphocytes that express the C-type lectin CD161 were identified to share a transcriptional profile, which led to the identification of an innate function across these previously defined subsets, including CD8, CD4 and TCRgd T cells. Gene expression of sort purified, resting CD161++, CD161+ and CD161- CD8+ T cells from peripheral blood was measured in 4 healthy donors.
Project description:Long non-coding RNAs (lncRNAs) are involved in cancer progression. In this study, the lncRNA profiling were analyzed in chemoresistant and sensitive breast cancer cells. We found a group of dysregulated lncRNAs in chemoresistant cells. Expression of dysregulated lncRNAs are correlated with dysregulated mRNAs, and enriched in GO and KEGG pathways related with cancer progression and chemoresistance development. Within those lncRNA-mRNA interactions, some lncRNAs may cis-regulate neighboring protein coding genes and involved in chemoresistance. The lncRNA NONHSAT028712 was then validated to regulate nearby CDK2 and interfere with cell cycle and chemoresistance. Furthermore, we identified another group of lncRNAs trans-regulated gene expression via interacting with different transcription factors (TF). Whereby NONHSAT057282 and NONHSAG023333 was found to modulate chemoresistance and most likely interacted with ELF1 and E2F1 respectively. In conclusion, this study reported for the first time the lncRNA expression patterns in chemoresistant breast cancer cells, and provided a group of novel lncRNA targets in mediating chemoresistance development in both cis- and trans- action mode. MCF-7/ADM replication 3 times, MCF-7/WT replication 3 times