Project description:Idiopathic inflammatory myopathies (polymyositis and dermatomyositis) are heterogeneous group of muscle disorders of unknown etiology.The pathogenic pathways responsible for muscle fiber damage and dysfunction in myositis are not currently well defined. Identification of such pathways may help to design novel therapeutic interventions and also help to develop diagnostic tests. Experiment Overall Design: Muscle biopsies from a separate group of 5 adult untreated female DM patients were profiled and compared to muscle tissue of normal human healthy volunteers to define molecular pathways in muscle of myositis patients. Confirm and map key pathway members to specific cell types in the muscle tissue of patients and controls using RT-PCR, Western blotting and Immunolocalization.
Project description:This dataset was obtained from the authors of Starke et al. (2020, Journal of Proteomics 222: 103791, https://doi.org/10.1016/j.jprot.2020.103791). Sample labels: 1 - High fiber diet inoculum 2 - High protein diet inoculum 3,4,5 - High fiber + unlabeled water 6,7,8 - High protein + unlabeled water 9,10,11 - High fiber + 25% of 99.9 atom% D2O 12,13,14 - High protein + 25% of 99.9 atom% D2O 15,16,17 - High fiber + 25% of 99.0 atom% H218O 18,19,20 - High protein + 25% of 99.0 atom% H218O Direct quote from the original article describing the dataset. “…the impact of specific diets on a defined microbial community derived from a human fecal sample was to be determined. The defined community was chosen to provide a stable in vitro setup that could be useful for future microbiome research. Briefly, the microbial community was grown in a heavy fiber and a heavy protein diet in addition to 25% heavy water, either as D2O or H218O. A dosage of 25% isotopically labeled water was chosen by trial-and-error to yield sufficient incorporation into protein but avoid the reduction of activity of individual organisms. A difference in growth medium formulation, representing a high-fiber diet and a high-protein diet, was utilized to evaluate shifts in microbial activity. We chose to assess these diets because high-protein, low-carbohydrate interventions represent a popular weight-loss strategy and because we expected a strong effect on the synthesis of amino acids by this comparison. After an incubation time of 12 h, the proteins were analyzed for label-free quantitation (metaproteomics) and incorporation of isotopes (protein-SIP), each in triplicates….”
Project description:Analysis of COVID-19 hospitalized patients, with different kind of symptoms, by human rectal swabs collection and 16S sequencing approach.
Project description:Idiopathic inflammatory myopathies (polymyositis and dermatomyositis) are heterogeneous group of muscle disorders of unknown etiology.The pathogenic pathways responsible for muscle fiber damage and dysfunction in myositis are not currently well defined. Identification of such pathways may help to design novel therapeutic interventions and also help to develop diagnostic tests. Keywords: Development or differentiation design
Project description:This clinical trial tests whether daily fiber supplementation will change the mucosal microbiome of the colon. The microbiome are microorganisms that live in the human gut. They serve a vital role in maintaining health. Certain microbial strains are associated with the growth of colon polyps, which eventually could go on to form colon cancer. Giving dietary fiber supplements may help prevent precancerous polyps from ever developing.
Project description:<p>Findings from recent studies suggest that the community of microbes residing in the human body is important in disease etiology; however, it remains unclear whether personal factors modulate human microbial composition. Studies based on animal models indicate that differences in composition might be attributed to sex-mediated effects. We analyzed the relationship of sex, adiposity, and dietary fiber intake with gut microbial composition using fecal samples from human subjects. We explored the associations of these factors with metrics of community composition and specific taxon abundances. We found that men and women had significantly different microbial community composition and that women had reduced abundance of a major phylum. Adiposity was associated with gut microbiome composition and specifically in women but not in men. Fiber from fruits and vegetables and fiber from beans were each associated with increased abundance of specific bacterial taxa. These findings provide initial indications that sex, adiposity, and dietary fiber might play important roles in influencing the human gut microbiome. Better understanding of these factors may have significant implications for gastrointestinal health and disease prevention.</p>