Project description:The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.
Project description:Prior studies have found that functional networks can rapidly add neurons as they build short-term memories, yet little is known about the principles underlying this process. Using voltage-sensitive dye imaging, we found that short-term sensitization of Tritonia's swim motor program involves rapid expansion of the number of participating neurons. Tracking neurons across trials revealed that this involves the conversion of recently discovered variably participating neurons to reliable status. Further, we identify a candidate serotonergic cellular mechanism mediating this process. Our findings reveal a new mechanism for memory formation, involving recruitment of pre-positioned, variably committed neurons into memory networks. This represents a shift from the field's long-term focus on synaptic plasticity, toward a view that certain neurons have characteristics that predispose them to join networks with learning.
Project description:While much is known about the genes and proteins that make up the circadian clocks in vertebrates and several arthropod species, much less is known about the clock genes in many other invertebrates, including nudibranchs. The goal of this project was to identify the RNA and protein products of putative clock genes in the central nervous system of three nudibranchs, Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea. Using previously published transcriptomes (Hermissenda and Tritonia) and a new transcriptome (Melibe), we identified nudibranch orthologs for the products of five canonical clock genes: brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1, circadian locomotor output cycles kaput, non-photoreceptive cryptochrome, period, and timeless. Additionally, orthologous sequences for the products of five related genes-aryl hydrocarbon receptor nuclear translocator like, photoreceptive cryptochrome, cryptochrome DASH, 6-4 photolyase, and timeout-were determined. Phylogenetic analyses confirmed that the nudibranch proteins were most closely related to known orthologs in related invertebrates, such as oysters and annelids. In general, the nudibranch clock proteins shared greater sequence similarity with Mus musculus orthologs than Drosophila melanogaster orthologs, which is consistent with the closer phylogenetic relationships recovered between lophotrochozoan and vertebrate orthologs. The suite of clock-related genes in nudibranchs includes both photoreceptive and non-photoreceptive cryptochromes, as well as timeout and possibly timeless. Therefore, the nudibranch clock may resemble the one exhibited in mammals, or possibly even in non-drosopholid insects and oysters. The latter would be evidence supporting this as the ancestral clock for bilaterians.
Project description:The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group.