Project description:Estrogen deprivation using aromatase inhibitors is currently the standard of care for patients with estrogen-receptor (ER)-positive breast cancer. Unfortunately, prolonged estrogen deprivation leads to drug resistance (i.e. hormone-independent growth). We therefore used DNA microarray analysis to study the gene expression profiles of wild-type MCF-7 cells (which are sensitive to antihormone therapy) and long-term estrogen deprived MCF-7:5C and MCF-7:2A breast cancer cells (which are resistance to estrogen-deprivation; aromatase inhibitor resistant). Transcriptional profiling of wild-type MCF-7 cells and estrogen deprived MCF-7:5C and MCF-7:2A cells was performed using Affymetrix Human Genome U133 Plus 2.0 Array. Keywords: breast cancer cells, estrogen
Project description:The main goal of the study is to define miR expression levels related to clinical and biological parameters. Now in particular, miR expression levels of fresh frozen (estrogen receptor-positive) primary tumors were related to PIK3CA genotype and with progression-free survival in breast cancer patients with metastatic breast cancer that received first-line aromatase inhibitor therapy.
Project description:Understanding the complex molecular mechanisms underlying resistance to endocrine therapy is a major challenge in the treatment of estrogen receptor-positive (ER+) breast cancers. We have previously demonstrated that glial cell line-derived neurotrophic factor (GDNF) signaling via the receptor tyrosine kinase RET promotes estrogen independent activation of ER. Here we have addressed the relevance of GDNF-RET signaling in response to aromatase inhibitor treatment and explored the efficacy of using RET inhibitors in breast cancer models of aromatase inhibitor response and resistance. A GDNF-response gene set, identified from gene expression profiling, was demonstrated to be an independent prognostic marker of poor patient outcome and, importantly, to be predictive of poor response to aromatase inhibitor treatment and development of resistance. The relevance of these findings was validated first by demonstrating an association of RET protein expression in an independent cohort of aromatase inhibitor resistant patient samples. Second, in in vitro models, GDNF-mediated RET signaling was demonstrated to enhance the survival of aromatase inhibitor resistant cells and to increase resistance in aromatase inhibitor sensitive cells. These effects could be reversed by targeting GDNF/RET signaling with the RET selective inhibitor NVP-BBT594 thus identifying GDNF-RET signaling as a potential therapeutic target, particularly in breast cancers resistant to aromatase inhibitors.<br>MCF7 cells were E2-deprived by culturing in phenol red-free RPMI 1640 supplemented with 10% DCC for 3 days and then serum-starved overnight in the presence or absence of fulvestrant (ICI182,780) (100 nM). The following day, cells were treated with GDNF (20 ng/ml) for 0, 4, 8, 24 and 48 hours in the presence or absence of fulvestrant (ICI182,780) (100 nM).
Project description:Aromatase inhibitors are first-line postmenopausal agents for estrogen receptor alpha (ERa)-positive breast cancer. However, there is considerable response heterogeneity and women frequently relapse. Estrogen deprivation does not completely arrest ERa activity, and transactivation of the unliganded receptor may continue through cross-talk with growth factor pathways. In contrast with aromatase inhibitors, the selective ER downregulator fulvestrant also abrogates ligand-independent ERa activity. The benefit of fulvestrant as an alternative, combination, or sequential therapy to aromatase inhibitor has been reported, but molecular mechanisms underpinning its relative efficacy remain unclear and biomarkers for patient selection are lacking. This study demonstrates, for the first time, that the overall transcriptional response to fulvestrant is of greater magnitude than estrogen deprivation, consistent with its clinical efficacy and more complete blockade of estrogenic signaling. Using a robust integrative approach, we identify a subset of genes differentially affected by fulvestrant that comprises distinct biologic networks, correlates with antiproliferative response, and has potential utility as predictive biomarkers for fulvestrant. Global gene expression profiles from ERα-positive breast carcinomas before and during presurgical treatment with fulvestrant (n = 38) or anastrozole (n = 81), and corresponding in vitro models, were compared. Transcripts responding differently to fulvestrant and estrogen deprivation were identified and integrated using Gene Ontology, pathway and network analyses to evaluate their potential significance. --------------------------------- This represents the data for fulvestrant only
Project description:Aromatase inhibitors are first-line postmenopausal agents for estrogen receptor alpha (ERa)-positive breast cancer. However, there is considerable response heterogeneity and women frequently relapse. Estrogen deprivation does not completely arrest ERa activity, and transactivation of the unliganded receptor may continue through cross-talk with growth factor pathways. In contrast with aromatase inhibitors, the selective ER downregulator fulvestrant also abrogates ligand-independent ERa activity. The benefit of fulvestrant as an alternative, combination, or sequential therapy to aromatase inhibitor has been reported, but molecular mechanisms underpinning its relative efficacy remain unclear and biomarkers for patient selection are lacking. This study demonstrates, for the first time, that the overall transcriptional response to fulvestrant is of greater magnitude than estrogen deprivation, consistent with its clinical efficacy and more complete blockade of estrogenic signaling. Using a robust integrative approach, we identify a subset of genes differentially affected by fulvestrant that comprises distinct biologic networks, correlates with antiproliferative response, and has potential utility as predictive biomarkers for fulvestrant.
Project description:Anti-estrogens and aromatase inhibitors are important drugs in the treatment of estrogen-dependent breast cancer. In order to investigate the effects of these drugs on gene expression in breast cancer cells, we treated estrogen receptor-positive MCF-7 cells, stably transfected with the aromatase gene (known as MCF-7aro cells), with testosterone, 17β-estradiol, two aromatase inhibitors (letrozole and anastrozole), and an anti-estrogen (tamoxifen). Microarray analyses using Affymetrix Human Genome U133A GeneChips were carried out using total RNA isolated from the control and treated cells. When comparing the effect of each inhibitor on gene expression we observe that letrozole and anastrozole are more similar in terms of the genes they affect, compared to treatment with tamoxifen. The results of this study provide us with a better understanding of the actions of both aromatase inhibitors and anti-estrogens at the molecular level. We believe that the results of this study serve as the first step in identifying unique expression patterns following drug treatment, and that this will ultimately be useful in customizing patient treatment strategies for estrogen-dependent breast cancer. The data presented here have been processed using the R-Project Bioconductor statistical tools package using the affy library. The following were applied: RMA background correction, pmonly probe-level correction, quantile normalization, avgdiff summary method. Raw data is provided in the form of .CEL files.
Project description:Estrogen deprivation using aromatase inhibitors is currently the standard of care for patients with estrogen-receptor (ER)-positive breast cancer. Unfortunately, prolonged estrogen deprivation leads to drug resistance (i.e. hormone-independent growth). We therefore used DNA microarray analysis to study the gene expression profiles of wild-type MCF-7 cells (which are sensitive to antihormone therapy) and long-term estrogen deprived MCF-7:5C and MCF-7:2A breast cancer cells (which are resistance to estrogen-deprivation; aromatase inhibitor resistant). Transcriptional profiling of wild-type MCF-7 cells and estrogen deprived MCF-7:5C and MCF-7:2A cells was performed using Affymetrix Human Genome U133 Plus 2.0 Array. Experiment Overall Design: We wanted to study the gene expression profiles of the different cell lines in their growth media without any drug treatment. Therefore, MCF-7, MCF-7:5C, and MCF-7:2A cells were grown in estrogen-free media (phenol red-free RPMI medium supplemented with 10% 4X dextran-coated charcoal-treated fetal bovine serum) until they were 70-80% confluent then RNA was extracted, labeled, and hybridized to the Affymetrix Human Genome U133 Plus 2.0 Arrays.
Project description:Anti-estrogens and aromatase inhibitors are important drugs in the treatment of estrogen-dependent breast cancer. In order to investigate the effects of these drugs on gene expression in breast cancer cells, we treated estrogen receptor-positive MCF-7 cells, stably transfected with the aromatase gene (known as MCF-7aro cells), with testosterone, 17β-estradiol, two aromatase inhibitors (letrozole and anastrozole), and an anti-estrogen (tamoxifen). Microarray analyses using Affymetrix Human Genome U133A GeneChips were carried out using total RNA isolated from the control and treated cells. When comparing the effect of each inhibitor on gene expression we observe that letrozole and anastrozole are more similar in terms of the genes they affect, compared to treatment with tamoxifen. The results of this study provide us with a better understanding of the actions of both aromatase inhibitors and anti-estrogens at the molecular level. We believe that the results of this study serve as the first step in identifying unique expression patterns following drug treatment, and that this will ultimately be useful in customizing patient treatment strategies for estrogen-dependent breast cancer. The data presented here have been processed using the R-Project Bioconductor statistical tools package using the affy library. The following were applied: RMA background correction, pmonly probe-level correction, quantile normalization, avgdiff summary method. Raw data is provided in the form of .CEL files. Keywords = estrogen-dependent breast cancer Keywords = aromatase Keywords: other
Project description:Estrogen receptor positive breast cancer is the most prevalent form of breast cancer. Although a number of available drugs are highly effective at blocking estrogen mediated receptor activity, thousands of patients die every year from ER positive breast cancers because the disease progresses to a stage at which these drugs are no longer effective. Thus, it is crucial to establish a comprehensive understanding of the biology of the estrogen receptor (ER) in ER:positive breast cancers that progress despite hormone therapy, a gap in knowledge that remains a serious impediment to successful treatment of patients with ER positive breast cancer. A key question that must be answered is how the estrogen receptor retains the capacity to activate transcription in the absence or near absence of estrogen. We have found a partial answer to this question upon investigating the effect of amplification and overexpression of Wolf Hirschhorn Syndrome Candidate 1:Like 1 (WHSC1L1), a gene that is amplified in 15% of breast cancers that codes for a histone:lysine methyltransferase. WHSC1L1 lies in the 8p11:p12 amplicon, a region of gene amplification that is strongly associated with breast cancer. In this study, we performed shRNA knockdown of the catalytically inactive short isoform of WHSC1L1 in SUM44PE breast cancer cells and found that expression of the short isoform of WHSC1L1 is necessary for expression of the estrogen receptor in this highly ER:positive cell line. In addition, we found that the estrogen receptor binds chromatin extensively in the absence of exogenous estrogen, including several actively transcribed canonical ER target genes, indicating that estrogen receptor signaling is active in SUM44 cells in estrogen free conditions. These findings represent a novel model for ER biology in luminal B breast cancers harboring amplification of WHSC1L1 and provide insight into the mechanisms by which ER: positive breast cancers become unresponsive to SERMs or aromatase inhibitors.