Project description:Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8-1, using microarray technology. A significant number of wheat genes identified in this screen were involved in ROS production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by NBT, DAB and titanium sulphate measurements/stainings. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R.solani when infecting wheat. We speculate that the wheat germin-like protein (GLP) is induced to inactivate the oxalic acid that is produced by the R. solani OAH.
Project description:Differential analysis of the potato-Rhizoctonia solani AG3 interaction. Samples were extracted from R. solani inoculated potato sprouts at two time points. R. solani is one of the most prominent fungal pests of potato and therefore of great economic relevance.
Project description:Rhizoctonia solani is an economically important soil-borne necrotrophic fungal pathogen, with a broad host range and for which little effective resistance exists in crop plants. Arabidopsis is resistant to the R. solani AG8 isolate but susceptible to R. solani AG2-1. Affymetrix microarray analysis was performed to determine genes that are affected in common and specifically by AG8 and AG2-1.