Project description:The arctic ecosystems are increasingly exposed to pollution particularly from offshore petroleum extraction-related activities. The objective of the study is to map transcriptome responses in copepods of the arctic region in response to PAHs phenanthrene (Phe) and benzo[a]pyrene (BaP) found in crude-oil contaminants.
Project description:The arctic ecosystems are increasingly exposed to pollution particularly from offshore petroleum extraction-related activities. The objective of the study is to map transcriptome responses in copepods of the arctic region in response to PAHs phenanthrene (Phe) and benzo[a]pyrene (BaP) found in crude-oil contaminants.
Project description:The arctic ecosystems are increasingly exposed to pollution particularly from offshore petroleum extraction-related activities. The objective of the study is to map transcriptome responses in copepods of the arctic region in response to PAHs phenanthrene (Phe) and benzo[a]pyrene (BaP) found in crude-oil contaminants.
Project description:Oil spills have polluted the marine environment for decades and continue to be a major source of polycyclic aromatic hydrocarbons (PAHs) to marine ecosystems around the globe. Although the toxicity of PAHs to fish has been well studied, the combined effects of extreme abiotic factors and oil are poorly understood. Gulf of Mexico killifish Fundulus grandis larvae (< 24 hours post hatch) were exposed to varying environmental conditions (dissolved oxygen 2, 6 ppm; temperature 20, 25, 30°C; and salinity 3, 10, 30 ppt) combined with varying concentrations of high energy water accommodated fractions (HEWAF) (total PAHs 0 – ~ 125 ppb) for a total of 48 h. Larvae survival and development were negatively affected by PAHs, starting with the lowest concentration tested (~15 ppb). High temperature + hypoxia + PAHs resulted in the lowest survival with salinity having little impact on any of the endpoints tested. Expression of the hepatic detoxifying gene cyp1a was highly induced in PAH-exposed larvae, but only under normoxic conditions. A lack of cyp1a induction under hypoxia and PAH exposure could explain the enhanced toxicity observed. This work highlights the need for more studies examining the combined impact of suboptimal water quality parameters in the presence of pollution in fish early life-stages.
2019-04-18 | GSE129998 | GEO
Project description:biochar and SMFC to solve PAHS pollution in soil
| PRJNA1126393 | ENA
Project description:PAHs removal in iron mediated biochar based constructed wetlands.
Project description:Cytochrome P450 enzymes play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs). We exposed mice to doses of benzo[a]pyrene (BaP) or a mixture of PAHs to characterize dose- and time-response relationships of specific cytochrome P450s. Mice exposed to the highest PAH exposures exhibited 1.7-5-fold higher intrinsic clearance rates for BaP, compared to controls, and higher Vmax values, indicating higher amounts of enzymes capable of metabolizing BaP. This study demonstrates that PAHs induce enzymes in dose- and time-dependent patterns in animal models at exposure levels researchers use to characterize hazards and at relevant human exposure levels to PAH mixtures found at Superfund sites. Accounting for these potential changes in enzyme profiles, relative rates of PAH bioactivation and detoxification, and resulting risk will help reduce uncertainty and improve risk assessments for PAHs at contaminated sites.
Project description:Polycyclic Aromatic Hydrocarbons (PAHs) are diverse environmental pollutants associated with adverse human health effects. Many studies focus on the carcinogenic effects of a limited number of PAHs and there is an increasing need to understand mechanisms of developmental toxicity of more varied yet environmentally relevant PAHs. A previous study characterized the developmental toxicity of 123 PAHs in zebrafish. Based on phenotypic responses ranging from complete inactivity to acute mortality, we classified these PAHs into eight bins, selected 16 representative PAHs, and exposed developing zebrafish to the concentration of each PAH that induced 80% phenotypic effect. We conducted RNA sequencing at 48 h post fertilization to identify gene expression changes as a result of PAH exposure.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.