Project description:Tomato fruit ripening is associated with a dramatic increase in susceptibility to the fungal pathogen Botrytis cinerea, the causal agent of gray mold. Mature green fruit, prior to ripening, are largely resistant to B. cinerea, whereas red fruit, at the end of ripening, are susceptible to B. cinerea infection. We used microarrays to detail the gene expression changes that are induced by B. cinerea when tomato fruit at unripe and ripe stages are infected. Keywords: plant responses to pathogens
Project description:Tomato fruit ripening is associated with a dramatic increase in susceptibility to the fungal pathogen Botrytis cinerea, the causal agent of gray mold. Mature green fruit, prior to ripening, are largely resistant to B. cinerea, whereas red fruit, at the end of ripening, are susceptible to B. cinerea infection. We used microarrays to detail the gene expression changes that are induced by B. cinerea when tomato fruit at unripe and ripe stages are infected. Experiment Overall Design: Tomato fruit at mature green and red ripe stages were wound inoculated with a water suspension of B. cinerea conidia. Twenty four hours post inoculation fruit pericarp and epicarp tissue around and including the inoculation sites was collected and the total RNA extracted. Total RNA was also collected from healthy and mock inoculated fruit.
Project description:Leaf mold disease caused by Cladosporium fulvum is a major disease in cultivated tomato plants and affects global tomato production. Some Cf genes, of which Cf-16 is an effective gene for resisting tomato leaf mold, are associated with leaf mold resistance; however, the molecular mechanism is largely unknown. We used comparative transcriptome analysis of C. fulvum-resistant (cv. Ontario7816, including the Cf-16 gene) and C. fulvum-susceptible (cv. Moneymaker) tomato lines to identify differentially expressed genes (DEGs) at 4 and 8 days postinfection with C. fulvum. Our results provide new insights into the resistance response mechanism of Cf genes to C. fulvum, especially the unique characteristics of Cf-16 in response to C. fulvum infection.
Project description:In the present study, an iTRAQ-based quantitative proteomic analysis, combined with gene expression and virus-induced gene silencing (VIGS), were used to identify genes associated with the infection of kiwifruit (Actinidia deliciosa ‘Hayward’) by B. cinerea. To the best of our knowledge, this is the first proteomic study of the kiwifruit-B. cinerea interaction, and provides information that can be used to better understand the mechanism of gray mold infection in kiwifruit.
Project description:Botrytis cinerea (gray mold) is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protec-tion and is essential for controlling tomato gray mold. The emergence of fungicide-resistant strains has made the control of Botrytis cinerea more difficult. While the genome of Botrytis cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such flu-dioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) li-braries for three Botrytis cinerea strains [two highly resistant (LR and FR) versus one highly sen-sitive (S) to fludioxonil], with and without fludioxonil treatment, to identify fludioxonil responsive genes that facilitate fungicide resistance. Functional enrichment analysis identified nine resistant related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up regulated, and seven resistant related DEGs down regulated. These included adenosine tri-phosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator super-family (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxo-nil-responsive genes, obtained from the RNA-sequence data sets were validated using quantita-tive real-time PCR (qRT-PCR). Based on RNA-sequence analysis it was found that fugal HHKs, like BOS1, BcHHK2, and Bchhk17, were in some way involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8 were differen-tially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes played a crucial role in the fludioxonil resistant mechanism of B. cinerea. These lines of evidence together allowed us to draw a general portrait of the anti-fludioxonil mechanisms for Botrytis cinerea, and the assembled and annotated transcrip-tome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.
Project description:ELICITOM project aims to decipher the complex regulation of tomato induced resistance to pathogens. Here, we use a classical elicitor of tomato defenses, ie beta-aminobutyric acid (BABA). This unusual amino acid triggers a strong resistance to the oomycete pathogen Phytophthora parasitica as well as to Oidium neolycopersici (powdery mildew) to a lesser extent. No resistance could be observed towards the grey mold (Botrytis cinerea). Transcriptomic data were generated from RNA extracted from tomato leaves (Solanum lycopercum cv "Marmande") sprayed with 10 mM BABA compared to control organs treated with water, 24 h after treatment. Mapping was achieved on Solanum lycopersicum cv Heinz1706 genome (release ITAG2,3).
2019-11-13 | GSE108421 | GEO
Project description:The Impact of Gray Mold Resistant Susceptible Rootstock Grafting on the Endophytic Bacterial Community Structure in Tomato Leaves
Project description:Plants have great potential to protect against pathogens and other abiotic stress, and thus the interaction between signaling networks of defense is incredible. This can be activated and express with the application of growth elicitors and antimicrobial natural compounds. In the present study we used natural polysaccharide, Chitosan (15kDa) against Grey mold in two grape varieties (Shine-muscat and Kyoho). The finding depicted that the interaction of DEG and KEGG in control and treated samples of grapevine, which provides the evidence for selection of gray mold related defense genes and chitosan for subsequent grapevine production/postharvest programs.
2020-12-31 | GSE129046 | GEO
Project description:Effects of grafting on endophytes of tomato and its relationship with gray mold disease fungal