Project description:In Tcrd-/- mice, dendritic epidermal T cells (DETC) are known to be replaced by a DETC-population expressing αβ TCR. Here, the TCR-repertoire from Tcrd-/- mouse skin T cells was compared to the one from WT mice. The analysis revealed the existence of T cells expressing MHC-independent αβ TCR and replacing the missing γδ T cells in Tcrd-/- mouse epidermis and dermis.
Project description:During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM-SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire. SAP deficiency resulted in both a significant loss of an immatureGzma+Blk+Etv5+Tox2+γδT17 precursor population, and a significant increase inCd4+Cd8+Rorc+Ptcra+Rag1+thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data suggest that SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Project description:To understand these pro-inflammatory effects of hybrid αβ-γδ T cells in detail, we carried out a transcriptomic analysis of hybrid αβ-γδ T cells and conventional γδ T cells isolated from the LNs of WT mice at rest and during EAE.
Project description:A new method of graft manipulation based on physical removal of αβ+ T cells and CD19+ B cells, leaving mature NK cells and γδ T cells in the graft, has been recently developed for HLA-haploidentical HSCT. We demonstrated that γδ T cells collected from transplanted patients are endowed with capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we hypothesized that infusion of ZOL in patients receiving this type of graft, may boost γδ T cell cytotoxic activity against acute leukemia blasts.
Project description:Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+T cell activation culminates in intraepithelial T cell (T-IEL)–mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+αβ and γδ T-IELs. Natural CD8+αβ and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αβ and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+T cells after gluten ingestion.
Project description:Notch-dependent BCL11B induction converts thymus seeding precursor cells into committed T cell progenitors that subsequently differentiate into T cells bearing either the γδ or αβ T cell receptor. In human, strong Notch activation favors γδ T cell development at the expense of αβ-lineage differentiation, but the underlying molecular mechanism has remained unclear. Therefore, we performed paired mRNA and miRNA profiling across 11 stages of human T cell development, including developing γδ T cells. We identify the miR-17-92 cluster as a direct Notch target and show that miR-17 promotes human TCRγδ T cell development by targeting BCL11B, a gene required for αβ but not for γδ T cell development. Thus, following its role as a licensing factor to induce BCL11B expression in early T cell precursors, Notch activation limits BCL11B expression through miR-17 until thymocytes have passed the β-selection checkpoint when Notch activation is turned off. Hereby Notch prevents premature BCL11B upregulation that is required for αβ-lineage differentiation and this results in preferential γδ-lineage differentiation. Our work unravels a dual role for Notch in controlling BCL11B expression during intrathymic differentiation and provides a unique resource for understanding the mRNA/miRNA interactions that control human T cell development. We used microarrays in order to profile gene expression in CD34+ thymocytes before culture and after 5 or 10 days culture on OP9 stromal cells expressing Notch ligands JAG1, JAG2, DLL1 or DLL4.
Project description:The interaction between extrinsic factors and intrinsic signal strength governs thymocyte development, but mechanisms linking them remain elusive. We report that mTORC1 couples microenvironmental cues with metabolic programs in orchestrating reciprocal development of two fundamentally distinct lineages, αβ and γδ T cells. Loss of mTORC1 impairs αβ but promotes γδ T cell development, and disrupts metabolic remodeling of oxidative and glycolytic metabolism. Mechanistically, reactive oxygen species (ROS) controlled by mTORC1 serves as a key metabolic signal, and perturbation of redox homeostasis impinges upon fate decisions. Furthermore, singlecell RNA sequencing and genetic dissection reveal that mTORC1 links developmental signals from T cell receptors and NOTCH to coordinate metabolic activity and signal strength. Our results establish mTORC1-driven metabolic signaling as a fundamental mechanism underlying thymocyte lineage choices. We used microarrays to compare the global transcription profiles of WT and Raptor-null cell populations in DN3a developing thymocytes, immaturesingle-positive (ISP) T-cells, and γδ T-cells
Project description:Notch-dependent BCL11B induction converts thymus seeding precursor cells into committed T cell progenitors that subsequently differentiate into T cells bearing either the γδ or αβ T cell receptor. In human, strong Notch activation favors γδ T cell development at the expense of αβ-lineage differentiation, but the underlying molecular mechanism has remained unclear. Therefore, we performed paired mRNA and miRNA profiling across 11 stages of human T cell development, including developing γδ T cells. We identify the miR-17-92 cluster as a direct Notch target and show that miR-17 promotes human TCRγδ T cell development by targeting BCL11B, a gene required for αβ but not for γδ T cell development. Thus, following its role as a licensing factor to induce BCL11B expression in early T cell precursors, Notch activation limits BCL11B expression through miR-17 until thymocytes have passed the β-selection checkpoint when Notch activation is turned off. Hereby Notch prevents premature BCL11B upregulation that is required for αβ-lineage differentiation and this results in preferential γδ-lineage differentiation. Our work unravels a dual role for Notch in controlling BCL11B expression during intrathymic differentiation and provides a unique resource for understanding the mRNA/miRNA interactions that control human T cell development. We used microarrays in order to profile the gene expression in 11 ex vivo T cell subsets, isolated from human thymus. Cord blood CD34+Lin- HPCs were used as a reference subset for extrathymic HPCs.
Project description:Notch-dependent BCL11B induction converts thymus seeding precursor cells into committed T cell progenitors that subsequently differentiate into T cells bearing either the γδ or αβ T cell receptor. In human, strong Notch activation favors γδ T cell development at the expense of αβ-lineage differentiation, but the underlying molecular mechanism has remained unclear. Therefore, we performed paired mRNA and miRNA profiling across 11 stages of human T cell development, including developing γδ T cells. We identify the miR-17-92 cluster as a direct Notch target and show that miR-17 promotes human TCRγδ T cell development by targeting BCL11B, a gene required for αβ but not for γδ T cell development. Thus, following its role as a licensing factor to induce BCL11B expression in early T cell precursors, Notch activation limits BCL11B expression through miR-17 until thymocytes have passed the β-selection checkpoint when Notch activation is turned off. Hereby Notch prevents premature BCL11B upregulation that is required for αβ-lineage differentiation and this results in preferential γδ-lineage differentiation. Our work unravels a dual role for Notch in controlling BCL11B expression during intrathymic differentiation and provides a unique resource for understanding the mRNA/miRNA interactions that control human T cell development. The expression of 756 miRNAs was determined using the Taqman stem-loop RT-qPCR method as previously described (Mets E. Leukemia. 2015, Mavrakis KJ. Nat Genet. 2011).