Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to ortho-phenylphenol, which involved initial growth inhibition and metabolism. Keywords: Time course
Project description:Pseudomonas aeruginosa is a major opportunistic pathogen causing a wide range of infections and one of the most problematic bacteria regarding antibiotic resistance, with an increasing incidence of multidrug and extensively-drug resistant strains, including resistance to last resource antibiotics such as carbapenems. Resistances are often due to complex interplays of naturally and acquired resistance mechanisms which are enhanced by its remarkably large regulatory network. Thus, the use of non-targeted shotgun methodologies such as mass spectrometry-based proteomics is crucial to understand these interplays and to reveal possible strain and species-specific novel mechanisms of antibiotic resistance. The aim of this study was to determine the proteomic response of two carbapenem-resistant and extensively-drug-resistant P. aeruginosa strains to subminimal inhibitory concentrations (sub-MICs) of meropenem. The strains belonged to high-risk clones ST235 and ST395, one carrying a class 1 integron-encoded VIM-4 metallo-β-lactamase and one carrying no acquired antibiotic resistance genes. Each strain was cultivated with three different sub-MICs of meropenem, and a quantitative shotgun proteomic approach was applied, using tandem mass tag (TMT) isobaric labeling followed by nano-liquid chromatography tandem-mass spectrometry, to determine significantly up- or down-regulated proteins and enriched groups of proteins and pathways. Cultivation of both strains with ½ and ¼ of the MIC, resulted in hundreds of differentially regulated proteins, including several β-lactamases, transport-related proteins (including multiple porins and efflux pumps), proteins associated with peptidoglycan metabolism and cell wall organization and dozens of regulatory proteins. Remarkably, all components of the H1 type VI secretion system were up-regulated in one of the strains. Enrichment analyses revealed that multiple metabolic pathways were affected. Additionally, numerous proteins of unknown function were also differentially-regulated in each strain. In conclusion, high subminimal-inhibitory concentrations of meropenem cause massive changes in the proteomes of carbapenem-resistant P. aeruginosa strains, involving a wide range of common and strain-specific mechanisms and proteins, many still uncharacterized which might potentially play a role in the susceptibility of P. aeruginosa to meropenem.
Project description:To further determine the origin of the increased virulence of Pseudomonas aeruginosa PA14 compared to Pseudomonas aeruginosa PAO1, we report a transcriptomic approach through RNA sequencing. Next-generation sequencing (NGS) has revolutioned sistems-based analsis of transcriptomic pathways. The goals of this study are to compare the transcriptomic profile of all 5263 orthologous genes of these nearly two strains of Pseudomonas aeruginosa.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ3] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ1] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.