Project description:The Long-read POG dataset comprises a cohort of 189 patient tumours and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the Personalized Oncogenomics (POG) program and the Marathon of Hope Cancer Centres Network includes accompanying DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing of variants facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind patterns of homologous recombination deficiency where no driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine, and is available as a resource for developing analytical approaches using this technology.
Project description:Ongoing improvements to next generation sequencing technologies are leading to longer sequencing read lengths, but a thorough understanding of the impact of longer reads on RNA sequencing analyses is lacking. To address this issue, we generated and compared two RNA sequencing datasets of differing read lengths -- 2x75 bp (L75) and 2x262 bp (L262) -- and investigated the impact of read length on various aspects of analysis, including the performance of currently available read-mapping tools, gene and transcript quantification, and detection of allele-specific expression patterns. Our results indicate that, while the scalability of read-mapping tools and the cost-effectiveness of long read protocol is an issue that requires further attention, longer reads enable more accurate quantification of diverse aspects of gene expression, including individual-specific patterns of allele-specific expression and alternative splicing. Two RNA-Seq datasets of differing read lengths (2x262 bp and 2x75 bp)