Project description:This SuperSeries is composed of the following subset Series: GSE25572: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides thetaiotaomicron) GSE25575: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides ovatus) Refer to individual Series
Project description:marine invertebrate-associated microbiomes are rich resources for prospecting novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, exhibits antimicrobial and antitumor activity.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:Rhizobia are soil bacteria that can associate with some legumes and participate in symbiotic nitrogen fixation. Bacterial CspA family members are small, single stranded nucleic acid binding proteins. Differentiation of rhizobial bacteria from a free-living to symbiotic state within legume root nodules follows a massive re-programming of bacterial gene expression. Here, the role of Sinorhizobium meliloti CspA family members in symbiotic development with Medicago sativa (alfalfa) was investigated. We defined expression patterns of CspA family members, identified CspA interacting RNAs, and investigated phenotypes and transcriptional defects associated with cspA deletion strains. We propose that these proteins affect rhizobial physiology through their global control of the cellular RNA secondary structure strength environment and through specific modulation of small non-coding RNA (sRNA) structures involved in cis-regulation of stress responsive sigma factor expression. This work describes an RNA structure mediated mechanism important for bacterial stress adaptation and symbiotic development within a plant host.
Project description:Rhizobia are soil bacteria that can associate with some legumes and participate in symbiotic nitrogen fixation. Bacterial CspA family members are small, single stranded nucleic acid binding proteins. Differentiation of rhizobial bacteria from a free-living to symbiotic state within legume root nodules follows a massive re-programming of bacterial gene expression. Here, the role of Sinorhizobium meliloti CspA family members in symbiotic development with Medicago sativa (alfalfa) was investigated. We defined expression patterns of CspA family members, identified CspA interacting RNAs, and investigated phenotypes and transcriptional defects associated with cspA deletion strains. We propose that these proteins affect rhizobial physiology through their global control of the cellular RNA secondary structure strength environment and through specific modulation of small non-coding RNA (sRNA) structures involved in cis-regulation of stress responsive sigma factor expression. This work describes an RNA structure mediated mechanism important for bacterial stress adaptation and symbiotic development within a plant host.
Project description:To characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells were co-culture with Lactobacillus casei and Bifidobacterium breve.