Project description:The aim of this study is to investigate the role of the transcription factor Xyr1 in the regulation of cellulolytic and xylanolytic genes of the filamantous fungus Myceliophthora thermophila
Project description:Conidial germination marks the beginning of the fungal life cycle, and understanding the genes associated with conidial germination provides insights into fungal pathogenicity and host interactions. Here, we use comparative transcriptomics to demonstrate the transcriptional similarities and differences during conidial germination and initial colony establishment in a plant pathogenic and an endophytic fungus, Fusarium graminearum and M. anisopliae, respectively. We compared the transcriptomes of F. graminearum and M. anisopliae across four stages of conidial germination: fresh conidia, polar growth, hyphal extension, and either first hyphal branching (on medium) or appressorium formation (on barley). F. graminearum exhibited a higher upregulation of CAZyme, specialized metabolite and effector genes compared to M. anisopliae during interaction with the host, particularly in the appressorium stage, reflecting its pathogenic nature. The appressorium structures formed when M. anisopliae conidia germinated on the host. The transcriptome analysis revealed that the fungus produced reduced transcript levels of CAZyme and specialized metabolite genes reflecting a less aggressive host penetration approach. The candidate genes associated with IAA synthesis were upregulated in M. anisopliae during the appressorium stage, supporting its endophytic lifestyle and suggests that the fungus uses a phytohormone based strategy to interact with plant hosts. Collectively, our findings expand the transcriptome resources and provide valuable insights into the gene networks involved in conidial germination and initiation of infection in pathogenic versus endophytic fungus.
Project description:Conidial germination marks the beginning of the fungal life cycle, and understanding the genes associated with conidial germination provides insights into fungal pathogenicity and host interactions. Here, we use comparative transcriptomics to demonstrate the transcriptional similarities and differences during conidial germination and initial colony establishment in a plant pathogenic and an endophytic fungus, Fusarium graminearum and M. anisopliae, respectively. We compared the transcriptomes of F. graminearum and M. anisopliae across four stages of conidial germination: fresh conidia, polar growth, hyphal extension, and either first hyphal branching (on medium) or appressorium formation (on barley). F. graminearum exhibited a higher upregulation of CAZyme, specialized metabolite and effector genes compared to M. anisopliae during interaction with the host, particularly in the appressorium stage, reflecting its pathogenic nature. The appressorium structures formed when M. anisopliae conidia germinated on the host. The transcriptome analysis revealed that the fungus produced reduced transcript levels of CAZyme and specialized metabolite genes reflecting a less aggressive host penetration approach. The candidate genes associated with IAA synthesis were upregulated in M. anisopliae during the appressorium stage, supporting its endophytic lifestyle and suggests that the fungus uses a phytohormone based strategy to interact with plant hosts. Collectively, our findings expand the transcriptome resources and provide valuable insights into the gene networks involved in conidial germination and initiation of infection in pathogenic versus endophytic fungus.
Project description:High ambient temperature regulated the plant systemic response to the beneficial endophytic fungus Serendipita indica. Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild type plants.
Project description:Producing the fuels and chemicals from renewable plant biomass has been thought as a feasible way for global sustainable development. However, the economical efficiency of biorefinery remains challenges. Here a cellulolytic thermophilic fungus, Myceliophthora thermophila, was constructed into a platform through metabolic engineering, which can efficiently convert lignocellulose to important bulk chemicals for polymers, four carbon 1, 4-diacids (malic and succinic acid), directly from lignocellulose without any extra enzymes addition or complicated pretreatment, with titer of over 200 g/L on cellulose and 110 g/L on plant biomass (corncob) during fed-batch fermentation. Our study represents a milestone of consolidated bioprocessing technology (CBP) and offers a new promising system for cost-effectively production of biomass-based chemicals and potentially fuels.
Project description:Engineering the Cellulolytic Fungus Myceliophthora thermophila into a Platform for Producing Commodity Chemicals Directly from Lignocellulose