Project description:Rhizoctonia solani is an economically important soil-borne necrotrophic fungal pathogen, with a broad host range and for which little effective resistance exists in crop plants. Arabidopsis is resistant to the R. solani AG8 isolate but susceptible to R. solani AG2-1. Affymetrix microarray analysis was performed to determine genes that are affected in common and specifically by AG8 and AG2-1.
Project description:We addressed the question how the interaction between the beneficial root endophyte Serendipita vermifera (Sv) and the pathogen Bipolaris sorokiniana (Bs) affects fungal behavior and determines barley host responses using a gnotobiotic natural soil-based split-root system for phenotypic and transcriptional analyses.
Project description:Plant can perceive and respond natural sound vibration (SV). Artificial SV also served as a novel trigger of induced resistance, although approaches for activating such plant innate immunity intensively studied on the use of biological and chemical agents (BCA). Artificial SV pre-treatment protected Arabidopsis thaliana seedlings against insect pests and fungal pathogens. However, SV-mediated epigenetic modulation remains unexplored while CBA-mediated induced resistance is known as a complicated process involving epigenetic regulation. Here, we performed a ChIP-seq analysis to understand the role of 10 kHz SV-mediated epigenetic modification in induced resistance against a soil-borne pathogenic bacterium Ralstonia solanacearum.
Project description:Rhizoctonia solani is an economically important soil-borne necrotrophic fungal pathogen, with a broad host range and for which little effective resistance exists in crop plants. Arabidopsis is resistant to the R. solani AG8 isolate but susceptible to R. solani AG2-1. Affymetrix microarray analysis was performed to determine genes that are affected in common and specifically by AG8 and AG2-1. 3 biological samples were taken from 3 treatments: non-infected control, R. solani AG8 infection and R. solani AG2-1 infection.
Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
Project description:Plant can perceive and respond natural sound vibration (SV). Artificial SV also served as a novel trigger of induced resistance, although approaches for activating such plant innate immunity intensively studied on the use of biological and chemical agents (BCA). Artificial SV pre-treatment protected Arabidopsis thaliana seedlings against insect pests and fungal pathogens. However, SV-mediated epigenetic modulation remains unexplored while CBA-mediated induced resistance is known as a complicated process involving epigenetic regulation. Here, we performed an expression profiling basd on small RNA-seq experiment to understand the role of 10 kHz SV-mediated epigenetic modification in induced resistance against a soil-borne pathogenic bacterium Ralstonia solanacearum.
Project description:Tandem Mass Tag (TMT)-based quantitative proteomic analysis of tomato soil borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici growth, and metabolism when treated with plant natural volatile organic compounds linalool. The Forl strain was cultured on PDA supplied with 0.8 mL/L linalool for 6 days at 25°C. The fungal strain on PDA supplied with only 0.1% Tween80 was cultured as the control. Three biological replicates were established for each treatment.
Project description:Analysis of differentiated Caco-2 intestinal epithelial cell line cocultured with probiotics L. acidophilus NCFM™, B. lactis 420, L. salivarius Ls-33 bacterial cells or treated with cell-free supernatant, and with E. coli O157:H7 cell-free supernatant. Lactobacillus and Bifidobacterium are important genera suggested to be beneficial for human health and E. coli O157:H7 is a pathogen causing hemorrhagic colitis and hemolytic uremic syndrome. Results provide insight into the mechanisms underlying the beneficial effects of probiotics on intestinal epithelial cells and a comparison to pathogenic E. coli.
Project description:The intricate interactions between plants and microorganisms have garnered substantial scientific interest. While previous studies have highlighted the potential influence of various fungal volatile compounds(VCs) on plant growth and development, the precise mechanisms underlying this modulation still need to be discovered. In this study, we discovered that fungal volatile organic compounds from the soil-borne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, following the priming of Arabidopsis with GT22 VC, it displayed an enhanced immune response, thereby mitigating the detrimental effects caused by both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs revealed the differential expression of 90, 83, and 137 genes after 3, 24, and 48 hours of volatile exposure, respectively. These responsive genes are involved in growth, hormone regulation, defense mechanisms, and signaling pathways. Notably, the induction of genes related to innate immunity, hypoxia, salicylic acid (SA) biosynthesis and camalexin biosynthesis by GT22 VCs were reported. Among the VCs emitted by GT22, limonene is particularly noteworthy. Arabidopsis seedlings exposed to limonene exhibited not only growth promotion effects but also alleviation of copper stress, indicating that limonene may play a role in the interaction between GT22 and plants. Overall, the findings of this study provide evidence supporting that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. Furthermore, our results suggest that seedlings exposed to T. inflatum GT22 VCs holds promising potential for harnessing beneficial effects to improve crop productivity.
Project description:Communication between interacting organisms via bioactive molecules is widespread in nature and plays key roles in diverse biological processes. Small RNAs (sRNAs) can travel between host plants and filamentous pathogens to trigger trans-kingdom RNA interference (RNAi) in recipient cells and modulate plant defense and pathogen virulence. However, how trans-kingdom RNAi is regulated has rarely been reported. Here, we show that the secretory protein VdSSR1 (secretory silencing repressor 1) from Verticillium dahliae, a soil-borne phytopathogenic fungus that causes wilt diseases in a wide range of plant hosts, is required for fungal virulence in plants through the suppression of trans-kingdom RNAi.