Project description:It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific pathogen free (SPF) and germ-free mouse (GF) using Nanopore direct RNA sequencing. Our results show that the microbiome has global influence on host’s RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length (PAL), and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression, our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.
Project description:It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific pathogen free (SPF) and germ-free mouse (GF) using Nanopore direct RNA sequencing. Our results show that the microbiome has global influence on host’s RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length (PAL), and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression, our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.
Project description:To understand how cholera toxin (CT) produced by Vibrio cholerae modulates gene expression of this organism within the intestine, RNA-seq analysis was performed on two samples each of WT and the ∆ctx mutant bacteria harvested from either the infant rabbit ileum or the cecum one-day post-intragastric infection. We found that 243 genes that were significantly up-regulated in the WT compared to the ∆ctx mutant and these included 101 genes in ileum samples, 118 in the cecum samples, and 24 in both samples. We found that genes known to be induced under low-iron growth conditions were up-regulated in WT relative to the ∆ctx mutant in both the ileum and in the cecum, with a marked up-regulation in the ileum relative to the cecum. We also found that genes involved in TCA cycle metabolism, L-Lactate utilization, and LCFA utilization were significantly up-regulated in the WT in the ileum relative to the ∆ctx mutant during infection. We conclude that CT-induced disease creates an iron-depleted metabolic niche in the gut that modulates the transcriptional profile of this pathogen during infection.