Project description:We identified genes regulated by parasitization of the silkworm Bombyx mori by three tachinid parasitoid species, Exorista japonica, Drino inconspicuoides and Pales pavida, using oligonucleotide microarrays. The numbers of genes and their intensity of expression varied with the species of parasitoid, within silkworm hemocytes and fat body. Bombyx mori hemocyte, silkgland and fat body samples parasitizated by Exorista japonica, Drino inconspicuoides and Pales pavida were prepared. Gene expression was compared in these two groups: control and parasitized.
Project description:We identified genes regulated by parasitization of the silkworm Bombyx mori by three tachinid parasitoid species, Exorista japonica, Drino inconspicuoides and Pales pavida, using oligonucleotide microarrays. The numbers of genes and their intensity of expression varied with the species of parasitoid, within silkworm hemocytes and fat body.
Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response .
Project description:Uric acid (UA) is the final product of purine metabolism and plays an important role as a physiological antioxidant. In recent years, several different groups have reported a correlation between decreased UA in Parkinson’s disease (PD) and clinical progression and stage of PD. However, little is known about the molecular mechanisms of decreased UA under oxidative stress. We used our systematic functional annotation pipeline for silkworm genes to identify a novel UA metabolic pathway regulator under oxidative stress in a UA metabolism mutant silkworm Bombyx mori model. Gene expression was measured in 3day of fifth instar larvae of abnormal uric acid synthesis Bombyx mori mutant of op.
Project description:The silkworm, Bombyx mori, is a complete metamorphosis insect and an economically important for silk production, the model to study insect physiology and biochemistry. Bombyx mori nucleopolyhedrovirus (BmNPV) is a principal pathogen of the silkworm and its host range is restricted to silkworm larvae, requiring interaction with silkworm larvae to accomplish virus replication. Prothoracic glands (PGs) are a model for synthetic ecdysone with regulating insect growth and development. In this study, day-4 fifth instar silkworm larvae were infected by BmNPV, the wandering silkworms appeared in the infected groups were 12 hours earlier than that in the control groups, and the ecdysone titer in infected larvae was significantly higher than that of the control larvae. Then, we used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h after BmNPV infection. The classifications of the 15 differential expression genes (DEGs) were mainly involved in the metabolic processes and pathways. The RT-qPCR results of the DEGs in the PGs of BmNPV-infected at 24, 48, and 72 h were generally consistent with the transcriptome data. The transcripts of BmTrypsin-1 and BmACSS3 were significantly increased from 24 to 72 h after BmNPV infection that they may be involved in the maturation process in the latter half of silkworm fifth instar larvae. These findings will help to address the interactions between BmNPV infection and host developmental response.
Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pM-CM-)brine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response . The third instar molted silkworm larvae were in oral infected by Nosema bombycis. In order to known the silkworm host response to Nosema bombycis infection at different time points, samples of infected larvae (i.e., the treatment set) and uninfected larvae (i.e., the control set) were collected at 2, 4, 6 and 8 dpi for RNA extraction and array hybridization. The obtained data were usd to investigate on the interplay of the genome-wide expression profile of hosts.
Project description:Molecular genetic studies of Bombyx mori have led to profound advances in understanding the regulation of development. Bombyx mori brain, as a main endocrine organ, plays important regulatory roles in various biological processes. The microarray technology will allow the genome-wide analysis of gene expression patterns in silkworm brains. We reported microarray-based gene expression profiles in silkworm brains at four stages including V7, P1, P2 and P3. A total of 4,550 genes were transcribed in at least one selected stage. Of these, clustering algorithms separated the expressed genes into stable expressed genes and variable expressed genes. The results of the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of stable expressed genes showed that the ribosomal and oxidative phosphorylation pathways were principal pathways. Secondly, four clusters of genes with significantly different expression patterns were observed in the 1,175 variable expressed genes. Thirdly, thirty-two neuropeptide hormones genes, nine neuropeptide-like precursor genes, and 117 cuticular protein genes were expressed in selected developmental stages. The present study defined major characteristics of the transcriptional profiles in the brains of Bombyx mori at the specific development stages. Our data will provide abundant information that will be useful in future research.
Project description:Maternal genes present in mature oocytes and play a crucial role in the early development of the silkworm. Although maternal genes have been widely studied in many species, there are limited research in Bombyx mori. High-through experimental technology provides a practical way for genome-wide study. Here we show a transcriptome study on silkworm eggs. Unfertilized eggs from five different stages of early development were used for detecting the change situation of gene expression. The expressed genes showed different patterns over time. Maternal genes were annotated according to homology analysis with Drosophila melanogaster. In our result, more than a half expressed maternal genes were fall into four expression patterns and showed downward trend over time. The function annotation of material genes showed that they were related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, ion binding and so on. In additional, twenty-two gene clusters including material genes were identified from 18 scaffolds. Altogether, we plotted a profile for maternal genes of Bombyx mori using digital gene expression profiling method. It will provide a base for mother-specific signature research and improve the understanding of early development of silkworm.