Project description:Agaricomycetes produce the most efficient enzyme systems to degrade wood and the most complex morphological structures in the fungal kingdom. Despite decades-long interest in their genetic bases, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known.Here, we perform comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies and enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes of A. ampla and S. commune revealed a high rate of divergence in developmental gene expression, but also several genes with conserved developmental expression, including novel transcription factors and small-secreted proteins, some of the latter might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in a widely distributed family of mushroom-forming fungi.
Project description:AIM: By adopting comparative transcriptomic approach, we investigated the gene expression of wood decomposing Basidiomycota fungus Phlebia radiata. Our aim was to reveal how hypoxia and lignocellulose structure affect primary metabolism and the expression of wood decomposition related genes. RESULTS: Hypoxia was a major regulator for intracellular metabolism and extracellular enzymatic degradation of wood polysaccharides by the fungus. Our results manifest how oxygen depletion affects not only over 200 genes of fungal primary metabolism but also plays central role in regulation of secreted CAZyme (carbohydrate-active enzyme) encoding genes. Based on these findings, we present a hypoxia-response mechanism in wood-decaying fungi divergent from the regulation described for Ascomycota fermenting yeasts and animal-pathogenic species of Basidiomycota.
2020-02-01 | GSE141153 | GEO
Project description:Fungal ITS and prokaryotic 16S diversity in decomposing wood
Project description:The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) from grapevine wood infected by a fungal pathogen in the presence of a root biological control agent. One of the goals was to obtain molecular data about the fungus pathogen (Phaeomoniella chlamydospora) during grapevine wood infection. Grapevine pathogen-infected wood mRNA profiles of 2-month-old plantlets (14 days post infection) were generated by deep sequencing, in triplicate, using Illumina Hiseq2500. The sequence reads that passed quality filters were analyzed by TopHat followed by Cufflinks. qRTaPCR validation was performed using SYBR Green assays. Using an optimized data analysis workflow, we mapped sequence reads to the grapevine genome (build IGGP 12x) and identified pathogen transcripts. RNAseq analyses, using a ribosomal RNA depletion technology for library preparation, provided identification of genes expressed by P. chlamydospora during infection: as for genes related to effector biosynthesis enzymes, carbohydrate-active enzymes and transcription regulators involved in known regulation pathways in fungi. Insights about P. oligandrum modulation of grapevine infection by this pathogen were also found. Our study represents the first detailed analysis of grapevine wood infection by a fungal pathogen generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive evaluation of mRNA content within grapevine wood tissue. We conclude that RNA-seq based transcriptome characterization would permit the dissection of complex biologic interactions.
Project description:The fungal response to compositional differences in softwood as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition.
Project description:Brown rot fungi have great potential in biorefinery wood conversion systems, because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Beyond the gene expression on glucose, 1129 genes were upregulated on cellulose and 1516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included GH12, GH131, CE1, AA3_1, AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these genes in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.
Project description:Wood-decomposition in terrestrial ecosystems is a very important process with huge ecologic consequences. This decomposition process is a combination of biological respiration, leaching and fragmentation, mainly triggered by organismic activities. In order to gain a deeper insight into these microbial communities and their role in deadwood decay, we used metaproteomics. Metaproteomics is an important tool and offers the ability to characterize the protein complement of environmental microbiota at a given point in time. In this dataset, we provide data of an exemplary beech wood log and applied different extraction methods to provide the proteome profile of beech dead wood and their corresponding fungal-bacterial community.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus CIRM-BRFM310 grows well on both coniferous and deciduous wood. In the present study we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks.