Project description:Excessive genomic instability coupled with abnormalities in DNA repair pathways induce high levels of “replication stress” when cancer cells propagate. Rather than hampering cancer cell proliferation, novel treatment strategies are turning their attention toward targeting cell cycle checkpoint kinases (such as ATR, CHK1, WEE1 and others) along the DNA damage response and replicative stress response pathways, thereby allowing unrepaired DNA damage to be carried forward towards mitotic catastrophe and apoptosis. The selective inhibitor of ATR kinase elimusertib (BAY 1895344), has demonstrated preclinical and clinical monotherapy activity; however, reliable predictive biomarkers of treatment benefit are still lacking. In this study, using gene expression profiling of 24 cell lines from different cancer types and in a panel of ovarian cancer cell lines, we found that nuclear-specific enrichment of checkpoint kinase 1 (CHK1) correlated with increased sensitivity to elimusertib. Using an advanced multispectral imaging system in subsequent cell line-derived xenograft specimens, we showed a trend between nuclear phosphorylated-CHK1 (pCHK1) staining and increased sensitivity to the ATR inhibitor elimusertib, indicating the potential value of pCHK1 expression as a predictive biomarker of ATR inhibitor sensitivity.
Project description:Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.
Project description:Embryonic stem cells (ESCs) which are susceptible to DNA damage depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remains unclear. Here we assessed the importance of DNA damage in ESC differentiation by culturing mouse ESCs (mESCs) on substrates of varying stiffness, which has been shown to induce stem cell differentiation. We show that stiffness-dependent mESC spreading induces DNA damage through nuclear compression that leads to loss of pluripotency, expression of Lamin A/C and germline markers. DNA damage and induction of Lamin A/C are observed in the presence of differentiating agents, as well as during mESC differentiation on cell derived matrices, identifying DNA damage as an early event in differentiation. Differentiation was also associated with reduction of DNA damage and activation of the DDR factor – ATR. While ATR is typically known to play roles in DDR pathway, its role during stiffness-mediated nuclear compression and mESC differentiation is unknown. Nuclear enrichment of activated ATR on stiff substrates and reduction of Lamin A/C expression due to ATR inhibition suggests that mESC differentiation is driven by nuclear compression-mediated DNA damage and involves ATR-dependent modulation of Lamin A/C.
Project description:Mitochondria are the central metabolic hub of the cell and their function is vital for cellular activities. Mitochondrial autophagy, or mitophagy, is a quality control mechanism to surveille the fitness and functionality of mitochondria and is therefore essential for life. Both mitochondrial dysfunction and malfunctional DNA damage response (DDR) are a major etiology for tissue impairment and aging. ATR has been shown mainly as a nuclear factor to conduct DNA damage response under DNA replication stress. Paradoxically, the human Seckel syndrome caused by ATR mutations is characterized by premature aging and neuropathies, suggesting a role of ATR in non-replicating tissues. Here we report a previously unknown yet direct role of ATR at mitochondria. We find that HSP90 chaperones ATR and PINK1 to mitochondria, where ATR interacts with and thereby stabilizes PINK1 docking at the mitochondrial translocase TOM/TIM complex as well as with the electron transport chain (ETC). ATR mutant cells are refractory to mitophagy initiation, which can be reverted by an ectopic expression of full length, but not ATR-interaction mutant, PINK1. ATR deletion alters mitochondrial dynamics and OXPHOS functions producing aberrantly high reactive oxygen species (ROS) that attack cytosolic macromolecules prior to damaging nuclear DNA. Intriguingly, pharmacological intervention of mitochondrial metabolism to prevent ROS overproduction can mute ATR-mediated nuclear DDR. This study demonstrates that ATR is an integrated component of the mitochondrial membrane to ensure mitochondrial fitness as a primary physiological function, which, together with its essential DDR function, safeguards the cell fate under physiological and genotoxic conditions.
Project description:Immune checkpoint blockade (ICB) demonstrates durable clinical benefit only in a minority of renal cell carcinoma (RCC) patients. Identifying molecular features that determine response and developing approaches to enhance the response remain an urgent clinical need. Here we found that, in multiple RCC cell lines, targeting the ATR-CHK1 axis with pharmacological inhibitors increased cytosolic DNA accumulation, activated the cGAS-IRF3-dependent cytosolic DNA sensing pathway, and resulted in the inflammatory cytokine expression. SETD2 mutated RCC cell lines or tumor samples were associated with preferential ATR-CHK1 activation over ATM-CHK2 activation. SETD2 knockdown promoted the cytosolic DNA sensing pathway and conferred greater sensitivity in response to ATR-CHK1 inhibition. In murine Renca tumors, Setd2 knockdown and ATR inhibitor VE822 synergistically promoted cytosolic DNA sensing pathway, immune cell infiltration, and immune checkpoint protein expression. Setd2 deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or in combination with VE822 than Setd2 proficient tumors. SETD2 mutations were associated with a higher response rate and prolonged overall survival in ICB-treated RCC patients, but not in non-ICB-treated RCC patients. This study provides a mechanism-based guidance to develop more personalized combination therapy regimens for RCC patients with SETD2 mutations.
Project description:Proteasome inhibitors are important chemotherapeutics in the treatment of multiple myeloma, but they are currently used empirically as no markers of sensitivity have been validated. We have identified expression of tight junction protein (TJP) 1 as being associated with sensitivity of plasma cells in vitro and in vivo to proteasome inhibitors. TJP1 suppressed expression of genes in the major histocompatibility class II region, including two catalytically active immunoproteasome subunits, thereby decreasing proteasome activity, a critical determinant of proteasome inhibitor sensitivity. This occurred through suppression by TJP1 of signaling through the epidermal growth factor receptor/Janus kinase 1/signal transducer and activator of transcription 3 pathway. In the clinic, high TJP1 expression in myeloma patients was associated with a significantly higher likelihood of responding to bortezomib, and with a longer time-to-progression after treatment. Taken together, these data support the use of TJP1 as a biomarker of sensitivity and resistance to proteasome inhibitors. To further elucidate mechanisms of bortezomib resistance, we developed human-derived multiple myeloma cell lines with a 4-fold or greater resistance to bortezomib. Then total RNA for bortezomib resistant (BR) and wild type (WT) was extracted and used for comparison by gene expression profiling.