Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. SUBMITTER_CITATION: Title: Acidification alters the composition of ammonia oxidizing microbial assemblages in marine mesocosms Journal: Marine Ecology Progress Series Issue: 492 Pages: 1-8 DOI: 10.3354/meps 10526 Authors: Jennifer L Bowen Patrick J Kearns Michael Holcomb Bess B Ward
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. amoA gene diversity from two ocean acidification experiments, Monterey Bay experiment (two time points, ambient and acidified) and Vineyard Sound experiment (ambient and acifidied, with and without nutrients) examined with 2 two-color arrays (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5.
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
Project description:Here, we introduce a reversible protein tag, ProMTag, that enables whole proteome capture, cleanup, and release of intact proteins for top-down analysis. Alternatively, the addition of a novel Trypsin derivative to the workflow generates peptides for bottom-up analysis. We show that the ProMTag workflow yields >90% for intact proteins and >85% for proteome digests. For top-down analysis, ProMTag cleanup improves resolution on 2D gels; for bottom-up exploration, this methodology produced reproducible mass spectrometry results, demonstrating that the ProMTag method is a truly universal approach that produces high quality proteome samples compatible with multiple downstream analytical techniques.