Project description:Importantly, mutations in nuclear envelope-encoding genes are the second-highest cause of familial dilated cardiomyopathy. One such nuclear envelope protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in mechanically active tissue such as heart remains poorly understood.
Project description:Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear Envelope Transmembrane Protein 39 (Net39) is muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type Lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.
Project description:Lamins and transmembrane proteins within the nuclear envelope are regulators of nuclear structure and chromatin organization. Nuclear Envelope Transmembrane Protein 39 (Net39) is a muscle-restricted nuclear envelope protein. We show that mice lacking Net39 succumb to severe myopathy and neonatal lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type Lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings reveal an intimate role for the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and highlight the importance of Net39 in these processes and in the molecular etiology of EDMD.
Project description:Lamins and transmembrane proteins within the nuclear envelope are regulators of nuclear structure and chromatin organization. Nuclear Envelope Transmembrane Protein 39 (Net39) is a muscle-restricted nuclear envelope protein. We show that mice lacking Net39 succumb to severe myopathy and neonatal lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type Lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings reveal an intimate role for the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and highlight the importance of Net39 in these processes and in the molecular etiology of EDMD.