Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:Data analysis is a critical part of quantitative proteomics studies in interpreting biological questions. Numerous computational tools including protein quantification, imputation, and differential expression (DE) analysis were generated in the past decade. However, searching optimized tools is still an unsolved issue. Moreover, due to the rapid development of RNA-Seq technology, a vast number of DE analysis methods are created. Applying these newly developed RNA-Seq-oriented tools to proteomics data is still a question that needs to be addressed. In order to benchmark these analysis methods, a proteomics dataset constituted the proteins derived from human, yeast, and drosophila with different ratios were generated. Based on this dataset, DE analysis tools (including array-based and RNA-Seq based), imputation algorithms, and protein quantification methods were compared and benchmarked. This study provided useful information on analyzing quantitative proteomics datasets. All the methods used in this study were integrated into Perseus which are available at https://www.maxquant.org/perseus.