Project description:We study the effect of nitrogen limitation on the growth and development of poplar roots. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by low nitrogen in the growth media. We report the effect of nitrogen limitation on the growth and development of poplar roots. Low nitrogen concentration led to increased root elongation followed by lateral root proliferation and finally increased root biomass. These morphological responses correlated with high and specific activation of genes encoding regulators of cell cycle and enzymes involved in cell wall biogenesis, growth and remodeling. Comparative analysis of poplar and Arabidopsis root transcriptomes under nitrogen deficiency indicated many similarities and diversification in the response in the two species. A reconstruction of genetic regulatory network (GRN) analysis revealed a sub-network centered on a PtaNAC1-like transcription factor. Consistent with the GRN predictions, root-specific upregulation of PtaNAC1 in transgenic poplar plants increased root biomass and led to significant changes in the expression of the connected genes specifically under low nitrogen. PtaNAC1 and its regulatory miR164 showed inverse expression profiles during response to LN, suggesting of a micro RNA mediated attenuation of PtaNAC1 transcript abundance in response to nitrogen deprivation. Poplar roots from low nitrogen treated and untreated from in vitro condition was selected for RNA extraction and hybridization on Affymetrix microarrays. Roots were sampled at 6, 12, 24, 48, 96 and 504h after transfer to control and low nitrogen media and RNA was extacted.
Project description:Mouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by hair follicle stem cells (HFSCs). We used RNA-seq to identify SOX9-dependent transcriptional changes and ChIP-seq to identify SOX9-bound genes in HF-SCs. Telogen quiescent hair follicle stem cells (HFSCs) and intefollicular epidermal cells (IFE) were FACS-purified for ChIP-sequcencing and HFSCs for RNA-Sequencing
Project description:Study hypothesis: We hypothesise that the reduced risk of colorectal cancer through increased fibre intake is mediated in part through changes in global protein acetylation.
Primary outcome(s): Altered faecal short chain fatty acid (SCFA) production.
In the cross-sectional arm there is a single sampling timepoint and all primary and secondary measures are made at this point. For the intervention arm sampling is performed at baseline and after 8 weeks of intervention.
Project description:We study the effect of nitrogen limitation on the growth and development of poplar roots. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by low nitrogen in the growth media. We report the effect of nitrogen limitation on the growth and development of poplar roots. Low nitrogen concentration led to increased root elongation followed by lateral root proliferation and finally increased root biomass. These morphological responses correlated with high and specific activation of genes encoding regulators of cell cycle and enzymes involved in cell wall biogenesis, growth and remodeling. Comparative analysis of poplar and Arabidopsis root transcriptomes under nitrogen deficiency indicated many similarities and diversification in the response in the two species. A reconstruction of genetic regulatory network (GRN) analysis revealed a sub-network centered on a PtaNAC1-like transcription factor. Consistent with the GRN predictions, root-specific upregulation of PtaNAC1 in transgenic poplar plants increased root biomass and led to significant changes in the expression of the connected genes specifically under low nitrogen. PtaNAC1 and its regulatory miR164 showed inverse expression profiles during response to LN, suggesting of a micro RNA mediated attenuation of PtaNAC1 transcript abundance in response to nitrogen deprivation.
Project description:Cancer evolution is fueled by genetic and epigenetic diversity, and intra-tumoral heterogeneity in DNA methylation has been shown to co-operate with genetic heterogeneity to empower evolutionary capacity of cancers such as chronic lymphocytic leukemia. Here, we show that epigenetic diversification leads to decreased coordination across layers of epigenetic information, likely reflecting an admixture of cells with diverging epigenetic identities. This manifests in incomplete gene silencing by the Polycomb complex, unexpected co-occurrence of typically mutually exclusive activating and repressing histone modifications, and greater cell-to-cell transcriptional heterogeneity.
2019-05-02 | GSE119103 | GEO
Project description:Diversification, disparification, and hybridization in the desert shrubs Encelia
Project description:Mouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by hair follicle stem cells (HFSCs). We used RNA-seq to identify SOX9-dependent transcriptional changes and ChIP-seq to identify SOX9-bound genes in HF-SCs.
Project description:Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acidâbase maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acidâbase equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences. Wistar wildtype male rats, aged 8 weeks, received a low fat diet, high protein or high fat diet for 4 months. After sacrification, livers were dissected, and immediately snap frozen in liquid nitrogen. Total RNA was isolated, quantified and qualified, and subsequently used for global gene expression profiling using Agilent 4x44K microarrays.