Project description:We report small RNA sequencing of the entomopathogenic nematode Steinernema carpocapsae. The nematodes were grown in liquid culture in homogenates of pig kidney/fat and infective juveniles were gathered. Then Galleria mellonella insect haemolymph was added to simulate insect infection, control nematodes weren't added haemolymph. Nematodes were collected after two hours after haemolymph addition.
Project description:All the reports on insect small RNAs come from holometabolous insects. However, small RNAs of hemimetabolous insects have not yet been investigated.Study of hemimetabolous insect small RNAs could provide more insights into evolution and function of small RNAs in hemi- and holometabolous insects. The locust is an important, economically harmful hemimetabolous insect and its phase changes is an interesting phenomenon.Here, we used high-throughput sequencing to characterize and compare the small RNA transcriptomes of gregarious and solitary phases in locusts. We found abundant small RNAs and their different expression profiles in the two phases.
Project description:Insect pathogenic fungus Beauveria bassiana in one of the best studied insect biocontrol fungus, which infects insects by cuticle penetration. After breaking the cuticles, the fungus will propagate in insect hemocoel and kill insect hosts. It has also been found that the mycelia of B. bassiana can penetrate plant tissues to reach insect inside plant, e.g. corn borer (Ostrinia furnacalis), but do not cause damage to plants. The mechanism of fungal physiological plasticity is poorly understood. To accompany our genome sequencing work of B. bassiana strain ARSEF 2860, fungal transcriptional responses to different niches were studied using an Illumina RNA_seq technique. To examine fungal response to insect cuticle, conidia were inoculated on locust hind wings for 24 hours before used for RNA extraction. To evaluate fungal adaptation to insect hemocole, the fifth instar larvae of cotton bollworms were injected with spore suspension and fungal cells isolated by centrifugation in a step gradient buffer. To unveil the mechanism of interaction with plants, the fungus was grown in corn root exudates for 24 hours. After RNA sequencing, around three million tags were acquired for each sample and fungal transcriptional profiles were compared. Unveiling gene differential expression patterns when the insect biocontrol fungus Beauveria bassiana grown in insect hemocoel, corn root exudates and on insect cuticles.
Project description:Insect pathogenic fungus Beauveria bassiana in one of the best studied insect biocontrol fungus, which infects insects by cuticle penetration. After breaking the cuticles, the fungus will propagate in insect hemocoel and kill insect hosts. It has also been found that the mycelia of B. bassiana can penetrate plant tissues to reach insect inside plant, e.g. corn borer (Ostrinia furnacalis), but do not cause damage to plants. The mechanism of fungal physiological plasticity is poorly understood. To accompany our genome sequencing work of B. bassiana strain ARSEF 2860, fungal transcriptional responses to different niches were studied using an Illumina RNA_seq technique. To examine fungal response to insect cuticle, conidia were inoculated on locust hind wings for 24 hours before used for RNA extraction. To evaluate fungal adaptation to insect hemocole, the fifth instar larvae of cotton bollworms were injected with spore suspension and fungal cells isolated by centrifugation in a step gradient buffer. To unveil the mechanism of interaction with plants, the fungus was grown in corn root exudates for 24 hours. After RNA sequencing, around three million tags were acquired for each sample and fungal transcriptional profiles were compared.
Project description:Ssr4 was experimentally proven to be required for radial growth, aerial conidation, insect infection and virulence-related cellular events in the insect mycopathogen Beauveria bassiana. For in-depth insight into the essential role of Ssr4 in the insect mycopathogen, transcriptomic analysis was carried out via high throughput sequencing (RNA-Seq), resulting in nearly one fourth of the whole genome differentially expressed in the Dssr4 mutant versus wild-type strain.
Project description:Three different maize lines were assayed for differential gene expression in mature leaf tissue. Leaves from the Oh43 maize line are more resistant to insect larvae damage than the original parents, lines Oh40B and W8. The goal of the project was to discover genes highly expressed in the Oh43 line that potentially contributes to insect resistance.
Project description:Amongst the various different insect groups, there is remarkable diversity in the number and size of wings. However the development of the basic body plan in insects is similar to a large extent. The genes of the hox complex regulate various pathways to bring about the development or modification of different organs. Ubx, a gene of the bithorax hox complex is expressed in the third thoracic segment of insects and is known to specify the fate of wing appendage in that segment.To understand the role of Ubx and how its regulatory mechanism has evolved through the course of evolution we have compared its genome wide targets in different insect orders. The identification of regulatory pathways and the key players Ubx regulates is crucial to understand how it has controlled wing development across insect orders. Our lab has previously identified direct targets of Ubx in Drosophila using ChIP-chip (Agrawal et al, 2011). To further our knowledge on the role of regulation in development and modification of hind wing appendage we have studied the targets in the hind wings of other insects (silk moth; Lepidoptera and honeybee; Hymenoptera) and performed a comparative analysis. We have employed ChIP followed by illumina sequencing to identify the targets of Ubx in developing hind and fore wing buds of Bombyx larvae. This is a first next generation sequencing study in Lepidoptera in an attempt to understand wing development. Chromatin Immunoprecipitation (ChIP) was used to identify genome wide targets bound by Ubx in Bombyx larval wing buds. The experiment to enrich Ubx bound regions was carried out using a Bombyx N terminal-Ubx specific poylclonal antibody raised in Rabbit and purified against a Protein A column to obtain IgG fraction. An Immunoprecipitation (IP) with Normal Rabbit IgG was used as a negative control to eliminate the regions that pertained to non specific binding to an Immunogloubulin. The normalization of both ChIP and IgG was done against sequenced input chromatin. Two replicates of single end 36 bp reads were sequenced using Ilumina for all the three conditions and for both fore and hind wing tissue samples.The peaks common to both the replicates were considered after applying a FDR cutoff.The fore wing target set was used for comparison with the hind wing targets.