Project description:The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening on animal cells is a powerful tool to reveal the expression patterns of viral entry genes for different hosts. But such exploration for SARS-CoV-2 remained limited. Here, we presented the broadest pan-species single-nucleus RNA sequencing study to date, covering 11 representative species in pets (cat, dog, hamster, lizard), livestock (goat, rabbit), poultry (duck, pigeon) and wildlife (pangolin, tiger, deer), from which we investigated the co-expression of ACE2 and TMPRSS2. Notably, the proportion of SARS-CoV-2 putative target cells in cat was found considerably higher than that of other species investigated in this study, highlighting the necessity to carefully evaluate the role of cats during SARS-CoV-2 circulation. Furthermore, cross-species analysis of comparative lung cell atlas in mammals, reptiles and birds revealed core developmental programs, critical connectomes and conserved regulatory circuits among evolutionarily distant species. Additionally, we developed a user-friendly and freely accessible online platform named PANDORA for researchers to fully exploit the pan-species single cell atlas. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and narrow down putative zoonotic reservoirs. Alternatively, our resources could also be utilized to illuminate the cellular and molecular mechanisms underlying animal tissue evolution.
2021-09-04 | GSE183300 | GEO
Project description:Virome in healthy pangolins revealed compatibility with multiple potentially zoonotic viruses
Project description:Ticks are specialized blood-sucking ectoparasitic arthropods that suck large quantities of blood from their hosts while carrying and transmitting a wide range of pathogens, including protozoa, bacteria, rickettsiae, helminths, and viral diseases. Tick bites can cause itchy and painful skin, anemia, weight loss, and even paralysis and death in the host, posing a major threat not only to the health of humans, domestic animals and wildlife, but also to industries such as animal husbandry.
2024-07-05 | PXD053685 |
Project description:Zoonotic bacteria isolated from Malaysia pangolins
Project description:Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viruses. Examples are Marek's disease virus (MDV) and Infectious bursal disease virus (IBDV). We used a new in vitro infection system and immunopeptidomics to identify peptides presented to T lymphocytes via classical MHC class II molecules.
2021-09-10 | PXD023954 | Pride
Project description:Diverse viruses are identified in flatworms from domestic animals
| PRJNA909433 | ENA
Project description:Emerging zoonotic bacterial pathogens in Malayan pangolins
Project description:Bovine tuberculosis (bTB), caused by Mycobacterium bovis (Mycobacterium tuberculosis complex), is a zoonotic disease that affects cattle and wildlife worldwide. In some regions of Spain, Iberian red deer (Cervus elaphus hispanicus) can serve as reservoir of infection, thus increasing the risk of human and cattle exposure and infection. Mesenteric lymph nodes are naturally infected with M. bovis in Iberian red deer, in which the digestive route of infection is particularly important in Mediterranean Spain. In this study we characterized the differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer naturally infected with M. bovis using a Ruminant Immuno-inflammatory Gene Universal Array (RIGUA) and real-time RT-PCR. Of the 600 genes that were analyzed in the microarray, 157 showed ? 1.2 fold changes in expression in infected or uninfected deer and 17 genes displayed an expression fold change greater than 1.7 with a P-value ? 0.05 and were selected for further analysis. These genes included tight junction proteins (Z02 and occluding), IL-11R, bactenecin, CD62L, CD74, desmoglein, IgA and IgM that constitute new findings and suggest new mechanisms by which M. bovis may modulate host inflammatory and immune responses. Identification of genes differentially expressed in animals and tissues naturally infected with M. bovis contributes to our basic understanding of the mechanisms of pathogenesis and protective immunity to mycobacterial infections and may have important implications for future functional genomic and vaccine studies to aid in the control of bTB in deer and other wildlife reservoir species. Mesenteric lymph node RNA from four different uninfected Iberian red deer stags and two Iberian red deer stags infected with Mycobacterium bovis. Infected animals were naturally infected with M. bovis. All animals were hunter-harvested and the tissues retrieved 2-6 hrs after animal hunting.
Project description:Incursions of new pathogenic viruses into humans from animal reservoirs are occurring with alarming frequency. The molecular underpinnings of immune recognition, host responses, and pathogenesis in this setting arepoorly understood. We studied pandemic influenza viruses to determine the mechanism by which increasing glycosylation during evolution of surface proteins facilitates diminished pathogenicity in adapted viruses. ER stressduring infection with poorly glycosylated pandemic strains activated the unfolded protein response, leading to inflammation, acute lung injury, and mortality. Seasonal strains or viruses engineered to mimic adapted viruses displaying excess glycans on the hemagglutinin did not cause ER stress, allowing preservation of the lungs and survival. We propose that ER stress resultingfrom recognition of non-adapted viruses is utilized to discriminate “non-self” at the level of protein-processing and to activate immune responses, with unintended consequences on pathogenesis. Understanding this mechanism should improve strategies for treating acute lung injury from zoonotic viral infections. Lung transcription analysis of Influenza A virus infected mice.