Project description:All samples were gathered from mouse RAW 264.7 cells (macrophages). Control total RNA was extracted from untreated RAW 264.7 cells cultured for either 1, 2, 4, 8, 16 or 48 hours. Test total RNA was extracted from lipopolysaccharide (100ng/ml) and lipopolysaccharide-binding protein (100pM) treated RAW 264.4 cells cultured for either 1, 2, 4, 8, 16 or 48 hours. This SuperSeries is composed of the following subset Series: GSE1099: Effect of LPS and LPS-binding protein treatment for 1 hour on RAW 264.4 cells GSE1100: Effect of LPS and LPS-binding protein treatment for 2 hours on RAW 264.4 cells GSE1101: Effect of LPS and LPS-binding protein treatment for 4 hours on RAW 264.4 cells GSE1102: Effect of LPS and LPS-binding protein treatment for 8 hours on RAW 264.4 cells GSE1103: Effect of LPS and LPS-binding protein treatment for 16 hours on RAW 264.4 cells GSE1104: Effect of LPS and LPS-binding protein treatment for 48 hours on RAW 264.4 cells Refer to individual Series
Project description:All samples were gathered from mouse RAW 264.7 cells (macrophages). Control total RNA was extracted from untreated RAW 264.7 cells cultured for 16 hours. Test total RNA was extracted from lipopolysaccharide (100ng/ml) and lipopolysaccharide-binding protein (100pM) treated RAW 264.4 cells cultured for 16 hours. Experiment design included three control vs test arrays and three dye swap arrays. Keywords: other
Project description:All samples were gathered from mouse RAW 264.7 cells (macrophages). Control total RNA was extracted from untreated RAW 264.7 cells cultured for either 1, 2, 4, 8, 16 or 48 hours. Test total RNA was extracted from lipopolysaccharide (100ng/ml) and lipopolysaccharide-binding protein (100pM) treated RAW 264.4 cells cultured for either 1, 2, 4, 8, 16 or 48 hours. This SuperSeries is composed of the SubSeries listed below.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.