Project description:Clostridioides difficile interactions with the gut mucosa are crucial for colonisation and establishment of infection, however key infection events during the establishment of disease are still poorly defined. To better understand the initial events that occur during C. difficile colonisation, we employed a dual RNA-sequencing approach to study the host and bacterial transcriptomic profiles during C. difficile infection in a dual-environment in vitro human gut model. Temporal changes in gene expression were analysed over 3-24h post infection and comparisons were made with uninfected controls.
Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆cwp66 mutant of Clostridioides difficile. We first constructed the ∆cwp66 mutant, and the phenotypic changes of the ∆cwp66 mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆cwp66 mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.
2019-10-24 | GSE135912 | GEO
Project description:Whole-genome sequencing of Clostridioides difficile
| PRJNA1154662 | ENA
Project description:Whole-genome sequencing of Clostridioides difficile