Project description:This study was conducted to investigate the role of MNRR1 in regulating the extracellular matrix and focal adhesion modulating ovarian cancer metastasis
Project description:Biomarkers that predict disease progression might assist the development of better therapeutic strategies for aggressive cancers, such as ovarian cancer. Here, we investigated the role of collagen type XI alpha 1 (COL11A1) in cell invasiveness and tumor formation and the prognostic impact of COL11A1 expression in ovarian cancer. Microarray analysis suggested that COL11A1 is a disease progression-associated gene that is linked to ovarian cancer recurrence and poor survival.
Project description:Malignant tumors, or cancers, are increasingly menacing people's life and health. For your female cancer patient, the ideal therapy should achieve dual purpose: suppress tumor progression meanwhile protect ovarian function. We previously showed that activated (phosphorylated) BIN2 in mouse ovaries regulates primordial follicle activation and oocyte quality through p-RPS6, and in this study, we found that BIN2 knockout or inhibition of BIN2 phosphorylation by BPP could suppress the genesis and progression of ovarian cancer. However, in human female ovarian cancer tissues, we didn’t see the increment of p-RPS6 although we observed a significant raise of p-BIN2. From this discrepancy between normal ovaries and ovarian cancer tissue, we guessed that p-BIN2 has other targets that are more important in ovarian cancer progression. Through mass spec identification, we found that only the constitutively active form of BIN2 (T423D & S424D) baits HDAC1, indicating that HDAC1 is a more important target of BIN2 in ovarian cancer. Next, we did saw Bin2 knockout or inhibition significantly decreased p-HDAC1 (S421) meanwhile increased H3K27ac. Moreover, chip seq showed that BIN2 inhibition significantly increased the binding of H3K27ac to multiple oncogenes. Besides, BIN2 knockout or inhibition could meanwhile protect ovarian function in mice with chemical carcinogen-induced in-situ ovarian cancers or with ovarian cancer cell transplantation. This study suggested that BIN2 inhibition could both suppress ovarian tumorigenesis and protect ovarian fertility, but through distinct mechanisms.
Project description:Biomarkers that predict disease progression might assist the development of better therapeutic strategies for aggressive cancers, such as ovarian cancer. Here, we investigated the role of collagen type XI alpha 1 (COL11A1) in cell invasiveness and tumor formation and the prognostic impact of COL11A1 expression in ovarian cancer. Microarray analysis suggested that COL11A1 is a disease progression-associated gene that is linked to ovarian cancer recurrence and poor survival. Whole tumor gene expression profiling was conducted on tissue samples from 60 ovarian cancer patients, and characteristics and clinico-pathological features of the patients are provided. We used several steps to analyze the expression profiles of the samples to identify the genes whose expression values correlate with survival, recurrence and advanced disease stage. First, using hazard ratios from univariate Cox regression analysis, the top 200 survival-related genes were evaluated for intersection with the top 200 recurrence-related genes, and 44 genes were obtained. Second, we examined the 44 genes that met the criteria of fold-change values between advanced stage and early stage samples of greater than 2 or less than 0.5. Ultimately, 17 genes were identified. A heat map of the 17 genes is depicted in the associated publication. Gene ontology and pathway enrichment analyses of the 17 genes were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). The major cellular component, biological process and molecular function of the 17 genes are associated with the extracellular region, intracellular signaling cascade, and protein binding and bridging, respectively. Two genes, COL11A1 and COL4A6, are involved in ECM-receptor interaction pathways. Notably, COL11A1 displayed the highest fold-change value in ovarian cancer disease progression; therefore, we selected COL11A1 for further experimental analysis.
Project description:Malignant tumors, or cancers, are increasingly menacing people's life and health. For your female cancer patient, the ideal therapy should achieve dual purpose: suppress tumor progression meanwhile protect ovarian function. We previously showed that activated (phosphorylated) BIN2 in mouse ovaries regulates primordial follicle activation and oocyte quality through p-RPS6, and in this study, we found that BIN2 knockout or inhibition of BIN2 phosphorylation by BPP could suppress the genesis and progression of ovarian cancer. However, in human female ovarian cancer tissues, we didn’t see the increment of p-RPS6 although we observed a significant raise of p-BIN2. From this discrepancy between normal ovaries and ovarian cancer tissue, we guessed that p-BIN2 has other targets that are more important in ovarian cancer progression. Through mass spec identification, we found that only the constitutively active form of BIN2 (T423D & S424D) baits HDAC1, indicating that HDAC1 is a more important target of BIN2 in ovarian cancer. Next, we did saw Bin2 knockout or inhibition significantly decreased p-HDAC1 (S421) meanwhile increased H3K27ac. Moreover, chip seq showed that BIN2 inhibition significantly increased the binding of H3K27ac to multiple tumor suppressors. Besides, BIN2 knockout or inhibition could meanwhile protect ovarian function in mice with chemical carcinogen-induced in-situ ovarian cancers or with ovarian cancer cell transplantation. This study suggested that BIN2 inhibition could both suppress ovarian tumorigenesis and protect ovarian fertility, but through distinct mechanisms.
Project description:Ovarian cancer (OC) displays the highest mortality among gynecological tumors, mainly due to early peritoneal dissemination, the high frequency of tumor relapse following primary debulking and the development of chemoresistance. All these events are thought to be initiated and sustained by a subpopulation of neoplastic cells, termed ovarian cancer stem cells (OCSC), that are endowed with self-renewing and tumor-initiating properties. This implies that interfering with OCSC function should offer novel therapeutic perspectives to defeat OC progression. To this aim, a better understanding of the molecular and functional makeup of OCSC in clinically relevant model systems is essential. We have profiled the transcriptome of OCSC vs. their bulk cell counterpart from a panel of patient-derived OC cell cultures. This revealed that Matrix Gla Protein (MGP), classically known as a calcification-preventing factor in cartilage and blood vessels, is markedly enriched in OCSC. Functional assays showed that MGP confers several stemness-associated traits to OC cells, including a transcriptional reprogramming. Patient-derived organotypic cultures pointed to the peritoneal microenvironment as a major inducer of MGP expression in OC cells. Furthermore, MGP was found to be necessary and sufficient for tumor initiation in OC mouse models, by shortening tumor latency and increasing dramatically the frequency of tumor-initiating cells. Mechanistically, MGP-driven OC stemness was mediated by the stimulation of Hedgehog signaling, in particular through the induction of the Hedgehog effector GLI1, thus highlighting a novel MGP/Hedgehog pathway axis in OCSC. Finally, MGP expression was found to correlate with poor prognosis in OC patients, and was increased in tumor tissue after chemotherapy, supporting the clinical relevance of our findings. Thus, MGP is a novel driver in OCSC pathophysiology, with a major role in stemness and in tumor initiation.