Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:Complex microbial metabolism is key to taste formation in high-quality fish sauce during fermentation. To guide quality supervising and targeted regulation, we analyzed the function of microbial flora during fermentation based on a previous metagenomic database. Most of the identified genes involved in metabolic functions showed an upward trend in abundance during fermentation. In total, 571 proteins extracted from fish sauce at different fermentation stages were identified. The proteins were mainly derived from Halanaerobium, Psychrobacter, Photobacterium, and Tetragenococcus. Functional annotation showed 15 pathways related to amino acid metabolism, including alanine, aspartate, glutamate, and histidine metabolism; lysine degradation; and arginine biosynthesis.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. 48 samples were used in this experiment
Project description:Pulses are an important food and are consumed as a sustainable source of plant-based proteins. The demand for pulse proteins is continuously increasing due to their nutritional, economic, and ecological values. Although pulse proteins provide many health benefits, they have limitations in terms of sensory attributes and anti-nutritional factors. To overcome these challenges, fermentation technology has been explored as a natural food processing method, as it has the potential to enhance the techno-functional qualities, sensory attributes, and nutritional value of the products. Spontaneous fermentation is a natural process in which the native microbial population grows in the substrate without the addition of specific microbes or spores. There is a knowledge gap regarding proteomic changes that occur during the spontaneous fermentation of legumes. The current study utilized mass spectrometry-based proteomics to investigate the effects of spontaneous fermentation on three different pulse protein isolates (chickpea, faba bean, and lentils).
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples. From the Qinghai Oilfield located in the Tibetan Plateau, northwest China, oil production mixtures were taken from four oil production wells (No. 813, 516, 48 and 27) and one injection well (No. 517) in the Yue-II block. The floating oil and water phases of the production mixtures were separated overnight by gravitational separation. Subsequently, the microbial community and the characteristics of the water solution (W813, W516, W48, and W27) and floating crude oil (O813, O516, O48, and O27) samples were analyzed. A similar analysis was performed with the injection water solution (W517).