Project description:Ribosomal protein (RP) genes must be coordinately expressed for proper assembly of the ribosome yet the mechanisms that control expression of RP genes in metazoans are poorly understood. Recently, TATA-Binding Protein-related factor 2 (TRF2) rather than the TATA-Binding Protein (TBP) was found to function in transcription of RP genes in Drosophila. Unlike TBP, TRF2 lacks sequence-specific DNA binding activity, so the mechanism by which TRF2 is recruited to promoters is unclear. We show that the transcription factor M1BP, which associates with the core promoter region, activates transcription of RP genes. Moreover, M1BP directly interacts with TRF2 to recruit it to the RP gene promoter. High resolution ChIP-exo was used to analyze in vivo the association of M1BP, TRF2, and the TFIID subunit, TAF1. Despite recent work suggesting that TFIID does not associate with RP genes in Drosophila, we find that TAF1 is present at RP gene promoters and that its interaction might also be directed by M1BP. Although M1BP associates with thousands of genes and TRF2 associates with hundreds, their colocalization is largely restricted to RP genes, suggesting that this combination is key to coordinately regulating transcription of the majority of RP genes in Drosophila.
Project description:Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 activates transcription at these loci and is essential. Orthologs of Tbf1 bind TTAGGG telomeric repeats in most eukaryotes, and TTAGGG cis-elements are present upstream of RP genes in plants and fungi, suggesting that Tbf1 was involved in both functions in ancestral eukaryotes. In all Hemiascomycetes, Rap1 substituted Tbf1 at telomeres and in the S. cerevisiae lineage this substitution also occurred independently at RP genes, illustrating the extreme adaptability and flexibility of transcriptional regulatory networks. Keywords: ChIP-CHIP
Project description:Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response
Project description:Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 activates transcription at these loci and is essential. Orthologs of Tbf1 bind TTAGGG telomeric repeats in most eukaryotes, and TTAGGG cis-elements are present upstream of RP genes in plants and fungi, suggesting that Tbf1 was involved in both functions in ancestral eukaryotes. In all Hemiascomycetes, Rap1 substituted Tbf1 at telomeres and in the S. cerevisiae lineage this substitution also occurred independently at RP genes, illustrating the extreme adaptability and flexibility of transcriptional regulatory networks. Keywords: Expression profiling Expression profiling of tetracycline addition time-course in the tetO-TBF1/tbf1 conditional mutant.
Project description:Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 activates transcription at these loci and is essential. Orthologs of Tbf1 bind TTAGGG telomeric repeats in most eukaryotes, and TTAGGG cis-elements are present upstream of RP genes in plants and fungi, suggesting that Tbf1 was involved in both functions in ancestral eukaryotes. In all Hemiascomycetes, Rap1 substituted Tbf1 at telomeres and in the S. cerevisiae lineage this substitution also occurred independently at RP genes, illustrating the extreme adaptability and flexibility of transcriptional regulatory networks. Keywords: ChIP-CHIP Two independent biological replicates of ChIP-CHIP of Tbf1-HA and Cbf1-HA.