Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and a leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there is little overlap in the sRNAs identified among these studies, which indicates that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there are likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence are not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and the leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there was little overlap in the sRNAs identified among these studies, which indicated that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there were likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence were not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 4496.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 947.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 4559.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 180-15.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 180-2.
Project description:Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in Streptococcus pneumoniae infections. However, the effect of pEVs on the disruption of alveolar epithelial barrier remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by alveolar epithelial cells. In vitro, pEVs induce autophagy activation in a dosage-dependent manner and decrease the alveolar epithelial barrier’s trans-epithelium electrical resistance (TEER). In addition, pEV-containing bacterial peotein serine/threonine-protein kinase StkP may act as an activator for Streptococcus pneumoniae-induced autophagy activation. When administered systemically in mice, Streptococcus pneumoniae wild type strain induced acute lung injury, the deletion of stkP deletion strain attenuated this injury. Taken together, pEVs cargos emerge as critical contributors to tissue damage in mammalian hosts.
Project description:RNA sequencing was used to explore the expression of all genes in Streptococcus pneumoniae under heat stress. The pneumococcal strain 2/2 was grown in broth culture under control (37°C) and high temperature (40°C) conditions. 2/2 culture samples were taken at sequential time points and RNA was extracted and sequenced.