Project description:Major depressive disorder is caused by gene-environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the mechanisms by which the gut microbiota modulates depression remain elusive. Herein, we detected the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs) and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level. We also performed functional analysis to explore the microbial-regulated pathological mechanisms of depression. Two hundred mRNAs, 358 lncRNAs and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differentially expressed mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting the differentially expressed mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, we constructed a microbial-regulated lncRNA-miRNA-mRNA network based on RNA-RNA interactions. According to the competitive endogenous RNA hypothesis, two neurodevelopmental ceRNA sub-networks implicating in depression were identified. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Project description:Major depressive disorder is caused by gene-environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the mechanisms by which the gut microbiota modulates depression remain elusive. Herein, we detected the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs) and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level. We also performed functional analysis to explore the microbial-regulated pathological mechanisms of depression. Two hundred mRNAs, 358 lncRNAs and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differentially expressed mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting the differentially expressed mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, we constructed a microbial-regulated lncRNA-miRNA-mRNA network based on RNA-RNA interactions. According to the competitive endogenous RNA hypothesis, two neurodevelopmental ceRNA sub-networks implicating in depression were identified. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
2024-05-13 | GSE266602 | GEO
Project description:Gut Microbiota of Post stroke recovery patients
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:The increased consumption of various beverages has been paralleled by an epidemic of several intestinal diseases around the world, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and colorectal cancer. Mounting evidence have shown that excessive consumption of beverages increases the risk of IBD and IBS. In addition, sugar-sweeter, food additives and food ingredients were identified to play important roles in these conditions. Consuming cold beverage is common among some people, especially in the youngsters. However, whether the cold stress contribute directly to host metabolism, gut barrier and gut-brain axis is unclear. In an intestinal function disorder model induced by cold water in mice, we investigated changes in gut transit, anxiety and depression like behavior. To evaluate the effect of cold water on gut barrier, we investigate the tight junctions in the colon. In addition, we employed RNA sequencing transcriptomic analysis to identify genes potentially driving the gut injury, and in parallel, examine the gut microbiota and metabolites in the feces.In an intestinal function disorder model induced by cold water in mice, we investigated changes in gut transit, anxiety and depression like behavior. To evaluate the effect of cold water on gut barrier, we investigate the tight junctions in the colon. In addition, we employed RNA sequencing transcriptomic analysis to identify genes potentially driving the gut injury, and in parallel, examine the gut microbiota and metabolites in the feces.
Project description:Study exploring the taxonomic component of the human gut microbiota in relation to quality of life and depression. This dataset includes 16S rRNA gene sequencing data from 1054 individuals from the Flanders region in Belgium. Microbiota covariates used in the study are provided.
Project description:Label-free quantitative proteomic technology was engaged to study protein expression levels of Post-stroke depression(PSD) rat models' brain tissue.
Project description:Study exploring the neuroactive potential of the human gut microbiota in relation to quality of life and depression. This dataset includes shotgun sequenced samples from the FGFP (Flemish Gut Flora Project: N=150) and TR-MDD (Treatment-Resistant Major Depression Disorder: N=7). Samples were provided by volunteers from the Flanders region in Belgium, and the dataset is balanced for age, gender, and stool consistency.