Project description:O-Glycosylation is an increasingly recognized modification of intracellular proteins in all kingdoms of life, and its occurrence in protists has been investigated to understand its evolution and its roles in the virulence of unicellular pathogens. We focus here on two kinds of glycoregulation found in unicellular eukaryotes: one is a simple O-fucose modification of dozens if not hundreds of Ser/Thr-rich proteins, and the other a complex pentasaccharide devoted to a single protein associated with oxygen sensing and the assembly of polyubiquitin chains. These modifications are not required for life but contingently modulate biological processes in the social amoeba Dictyostelium and the human pathogen Toxoplasma gondii, and likely occur in diverse unicellular protists. O-Glycosylation that is co-localized in the cytoplasm allows for glycoregulation over the entire life of the protein, contrary to the secretory pathway where glycosylation usually occurs before its delivery to its site of function. Here, we interpret cellular roles of nucleocytoplasmic glycans in terms of current evidence for their effects on the conformation and dynamics of protist proteins, to serve as a guide for future studies to examine their broader significance.
Project description:BackgroundKinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway-a core metabolic pathway in a wide range of organisms-is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment.ResultsHere we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea.ConclusionWe show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba.
Project description:Previous observations suggested that microbial communities contribute to coral health and the ecological resilience of coral reefs. However, most studies of coral microbiology focused on prokaryotes and the endosymbiotic algae Symbiodinium. In contrast, knowledge concerning diversity of other protists is still lacking, possibly due to methodological constraints. As most eukaryotic DNA in coral samples was derived from hosts, protist diversity was missed in metagenome analyses. To tackle this issue, we designed blocking primers for Scleractinia sequences amplified with two primer sets that targeted variable loops of the 18S rRNA gene (18SV1V2 and 18SV4). These blocking primers were used on environmental colonies of Pocillopora damicornis sensu lato from two regions with contrasting thermal regimes (Djibouti and New Caledonia). In addition to Symbiodinium clades A/C/D, Licnophora and unidentified coccidia genera were found in many samples. In particular, coccidian sequences formed a robust monophyletic clade with other protists identified in Agaricia, Favia, Montastraea, Mycetophyllia, Porites, and Siderastrea coral colonies. Moreover, Licnophora and coccidians had different distributions between the two geographic regions. A similar pattern was observed between Symbiodinium clades C and A/D. Although we were unable to identify factors responsible for this pattern, nor were we able to confirm that these taxa were closely associated with corals, we believe that these primer sets and the associated blocking primers offer new possibilities to describe the hidden diversity of protists within different coral species.