Project description:New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.
Project description:The goal of this study is to explore genes that are differentially expressed in E. coli C strains (wt and a butanol-tolerant mutant) after 1-butanol treatment. The butanol-tolerant mutant strain PKH5000 (denoted by 'E' for 'evolved') were derived from KCTC 2571 (wt) (denoted by 'A' for 'ancestral') by proton beam irradiation. 0 and 1 in sample title mean before and after butanol treatment, respectively.
Project description:The goal of this study is to explore genes that are differentially expressed in E. coli C strains (wt and a butanol-tolerant mutant) after 1-butanol treatment. The butanol-tolerant mutant strain PKH5000 (denoted by 'E' for 'evolved') were derived from KCTC 2571 (wt) (denoted by 'A' for 'ancestral') by proton beam irradiation. 0 and 1 in sample title mean before and after butanol treatment, respectively. All microarray experiments were carried out in triplicate (rep1-3). Probes were spotted in duplicate on separate area of each microarray slide, which produces two GPR files (a and b suffixes).
Project description:Two freshwater strains of the gammaproteobacterium Beggiatoa alba, B18LD and OH75-2a, are able to use methanol as a sole carbon and energy source under microoxic conditions. Genes encoding a methanol dehydrogenase large-subunit homolog and four enzymes of the tetrahydromethanopterin-dependent C(1) oxidation pathway were identified in B18LD. No evidence of methanotrophy was detected.
Project description:Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa, Zea mays, Sorghum bicolor, Cicer arietinum, and Vitis vinifera, and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii, Physcomitrella patens, and Amborella trichopoda, revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice (OsAlba), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.