Project description:The adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging. CD150+CD48-LSK HSCs were double sorted from WT and Lnk-/- mice at both young and old ages (2 months and 20 months, respectively). RNA was isolated using miRNeasy kit from QIAGEN and processed using the NuGEN Pico kit. The microarray analysis was performed at the Penn Molecular Profiling/Genomics Facility using GeneChip Mouse Gene 1.0ST array (Affymetrix).
Project description:The adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging.
Project description:Purpose: Compare the transcriptome of hematopoietic stem cells (HSCs) that were aged in old and young niches Methods: barcoded GFP+ HSCs were FACS-sorted from a) three recipient mice 15 months post transplantation, and b) six serial transplantation recipient mice 5 months after the 8th transplantation, then subjected to processed using the Chromium Single-cell 3′ v2 Library Kit (10× Genomics, Pleasanton, CA) following the manufacturer’s instructions Results: we obtained transcriptomes of about 12k HSCs aged in young niche, and about 10k HSCs aged in old niche, with the average sequencing depth at close to 50k reads per cell Conclusions: we identified striking differences in gene expression profiles 1) between HSCs aged in young niches from mice with early aging and from mice with delayed aging, and 2) between HSCs aged in old niches and young niches when mice exhibited hematopoietic aging phenotype