Project description:Acidithiobacillus ferrooxidans (A. ferrooxidans) ATCC 23270 is a model bacteria for bioleaching research. Because of the use of extractant in metal extraction industry, A. ferrooxidans needs to cope with the water-organic two-phase system. To get insight into the molecular response of A. ferrooxidans to organic solvent, global gene expression pattern was examined in A. ferrooxidans ATCC 23270 cells subjected to Lix984n (an organic extractant) using the method of whole-genome DNA microarray. The data suggested that the global response of A. ferrooxidans to Lix984n stress was characterized by the up-regulation of genes involved in pentose phosphate pathway, fatty acid and glutamate biosynthesis contrary to the significant down-regulation of the majority motility-related genes. In further study, compared to heterotrophic bacteria in dealing with short-time stress, A. ferrooxidans has a special strategy of continuously enhancing the expression of genes encoding proteins involved in electron transport, such as petI, petII, cyo and cyd. Besides, acrAB-tolC operon encoding organic solvent efflux pump and its positive regulator gene ostR were addressed.
Project description:Acidithiobacillus ferrooxidans (A. ferrooxidans) ATCC 23270 is a model bacteria for bioleaching research. Because of the use of extractant in metal extraction industry, A. ferrooxidans needs to cope with the water-organic two-phase system. To get insight into the molecular response of A. ferrooxidans to organic solvent, global gene expression pattern was examined in A. ferrooxidans ATCC 23270 cells subjected to Lix984n (an organic extractant) using the method of whole-genome DNA microarray. The data suggested that the global response of A. ferrooxidans to Lix984n stress was characterized by the up-regulation of genes involved in pentose phosphate pathway, fatty acid and glutamate biosynthesis contrary to the significant down-regulation of the majority motility-related genes. In further study, compared to heterotrophic bacteria in dealing with short-time stress, A. ferrooxidans has a special strategy of continuously enhancing the expression of genes encoding proteins involved in electron transport, such as petI, petII, cyo and cyd. Besides, acrAB-tolC operon encoding organic solvent efflux pump and its positive regulator gene ostR were addressed. In this work, the whole-genome array was employed to conduct the time-course transcriptome analysis of A. ferrooxidans ATCC 23270 in response to 1% (v/v) Lix984n for 5, 20, 40, and 80 min.
Project description:Identify genes in liver tissue whose expression is under genetic and high fat diet induced regulation in three Chromosome 1 substitution lines derived from Chinese wild mice (B6-Chr1SJ (SJ), B6-Chr1KM (KM), and B6-Chr1HZ (HZ)) and one donor strain C57B/LJ(B6) We used microarrays to detail the global gene expression in three chromosome 1 substitution lines and one donor strain which fed with control or high fat diet.
2016-05-04 | GSE81078 | GEO
Project description:Organic acid against bacteria project
Project description:In this study, we showed that three bacteria were able to inhibit the mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, by the emission of microbial volatile organic compounds (mVOCs). Aiming to understand the molecular mechanisms of these interactions, we evaluated the transcriptomic response of T. ethacetica to the mVOCs produced by one of these bacterial isolates.
Project description:Organic matter recycling in marine systems is largely driven by microbial processes, particularly in the Arctic where primary production and inputs can be temporally offset from upper trophic level consumption. This study followed bacterial dynamics in the chlorophyll maximum of the Bering Strait and sediment-water interface of the Chukchi Sea using metaproteomic and 16S rRNA methods to measure cellular function and taxonomic composition under low and high marine-derived particulate organic matter (POM) treatments at 0°C. Parallel analysis of major organic components (lipids and amino acids) allowed a comparison of microbial-POM interactions. Over the 10 day experimental period, bacteria under both treatments showed rapid community responses and changes in proteomic expression, accompanied by small changes in the concentration and distributions of organic components. In the Bering Strait community, protein translation was an important immediate cellular response under both POM scenarios while specific metabolic processes were more distinct between treatments. For example, under both conditions, evidence for carboxylic acid metabolism increased at day 6 while carbohydrate utilization as an energy source showed unique patterns as the experiments progressed. With POM additions to the Bering Strait community, nitrogen transport and regulation went up, including nitrogen fixation and ammonia assimilation, by day 6. In addition, a number of vitamin enzymatic cofactors were enriched by this day, providing evidence for an increase in C1 metabolism at that time. Low POM conditions stimulated the cycling and synthesis of amino acids, which was not as pronounced under the high POM treatment. In the Chukchi Sea community, nitrate reduction and substrate-specific transporter activity was statistically higher than in the Bering Strait, especially under low POM conditions. Taxonomic inference revealed that a wide range of bacterial classes were associated with the shifting cellular functions, but that Alphaproteobacteria, Gammaproteobacteria and Flavobacteria controlled most of these protein abundances. Activities of all classes were highly variable, with less dominant bacterial groups exhibiting a particularly strong degree of niche separation.
2019-02-18 | PXD008780 | Pride
Project description:Digestate-based organic amendment substitution improves the red soil quality and pakchoi yield
| PRJNA1099389 | ENA
Project description:Organic fertilizers influence the rhizosphere bacteria and soybean growth under heat and water stress