Project description:The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.
2021-04-06 | MTBLS2021 | MetaboLights
Project description:Rumen ciliates transcriptome
| PRJNA533195 | ENA
Project description:TOH-meta-omics
| PRJNA827862 | ENA
Project description:Prokaryotic population associated with rumen ciliates
Project description:Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic suite, to statistically quantify singe-cell gene expression along de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of qNSCs, characterized by high niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying adult qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes. Single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny.
Project description:Optimisation of DNA-protein co-extraction from the thin microbial biofilm inhabiting marine plastic debris for meta-omics and comparative metaproteomics analysis.
Project description:Multi-omics integration analysis of rumen microorganisms isolated from cows fed either an ad lib or restricted diet, and comparing this with methane emission rates for the cows.